簡易檢索 / 詳目顯示

研究生: 蔡嘉倫
論文名稱: 非週期准相位匹配光柵之相位匹配頻譜 及空間週期分布量測
Phase-matching Spectrum Measurement and Domain Period Reconstruction of Aperiodic Quasi-phase Matched Gratings
指導教授: 楊尚達
口試委員: 黃衍介
陳彥宏
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 42
中文關鍵詞: 頻譜干涉相位量測非線性元件
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 非線性光譜干涉(Nonlinear spectral interferometry, NLSI)是一種量測准相位匹配光柵(quasi-phase matched gratings, QPM)的複數相位匹配頻譜相位成分(phase-matching spectral phase)的技術。它的理論建立在光譜干涉技術(spectral interferometry)上,配合寬頻光源與一薄非線性參考晶體,以及一非線性待測晶體,量測干涉儀兩臂的二倍頻干涉頻譜(interferogram)。由於薄非線性參考晶體的相位可近似於常數,干涉儀兩臂的光頻譜相位差可近似於待測晶體的頻譜相位。最後,藉著量測出的頻譜相位與其功率頻譜結合,此技術甚至能大致還原出准相位匹配光柵在空間上的週期分佈。
    此技術的好處是,它提供了一種快速、靈敏、準確、非破壞性的方法。它具有不受限於光源本身的啁啾(chirp)程度,以及可以量測任何種類准相位匹配光柵的優點。不同於一般利用顯微鏡拍照的技術,此種方法量測到的並非是晶體表面的狀況,而是晶體內部真正的情形,也不會有顯微拍照技術中,因為照片銜接問題產生的隨機誤差。據我們所知,這是第一個以實驗方法,量測出准相位匹配光柵頻譜相位,以及正確還原出晶體在空間上週期分佈的研究成果。


    目錄 摘要 I 誌謝 II 目錄 III 圖目錄 IV 第一章 序言 1 第二章 理論 5 2.1 非線性光譜干涉技術原理 6 2.2 准相位匹配晶體空間週期分布之重建 11 2.3 光源頻寬對於重建晶體週期趨勢的影響 16 第三章 實驗結果與討論 21 3.1 非線性光譜干涉技術實驗架構 22 3.2 短晶體准相位匹配光柵之量測 28 3.3 長晶體准相位匹配光柵之量測 34 第四章 結論 39 參考文獻 41

    1. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron, 28, 2631-2654 (1992).
    2. M. Asobe, O. Tadanaga, T. Umeki, T. Yanagawa, Y. Nishida, K. Magari, and H. Suzuki, “Unequally spaced multiple mid-infrared wavelength generation using an engineered quasi-phase-matching device,” Opt. Lett., 32, 3388-3390 (2007).
    3. J. -Y. Lai, C. -W. Hsu, N. Hsu, Y. -H. Chen, and S. -D. Yang, “Hyperfine aperiodic optical superlattice optimized by iterative domino algorithm for phase-matching engineering,” Opt. Lett., 37, 1184-1186 (2012).
    4. J. -Y. Lai, Y. -J. Liu, H. -Y. Wu, Y. -H. Chen, and S. -D. Yang, “Engineered multiwavelength conversion using nonperiodic optical superlattice optimized by genetic algorithm,” Opt. Express, 18, 5328-5337 (2010).
    5. J. -Y. Lai, C. -W. Hsu, D. -Y. Wu, S. -B. Hung, M. -H. Chou, and S. -D. Yang, “Healing block-assisted quasi-phase matching,” Opt. Lett., 38, 1176-1178 (2013).
    6. C. Heese, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, “Ultrabroadband, highly flexible amplifier for ultrashort midinfrared laser pulses based on aperiodically poled Mg:LiNbO3,” Opt. Lett., 35, 2340-2342 (2010).
    7. Ł. Kornaszewski, M. Kohler, U. K. Sapaev, and D. T. Reid, “Designer femtosecond pulse shaping using grating-engineered quasi-phase-matching in lithium niobate,” Opt. Lett., 33, 378-380 (2008).
    8. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev., 127, 1918-1939 (1962).
    9. G. Imeshev, M. A. Arbore, S. Kasriel, and M. M. Fejer, “Pulse shaping and compression by second-harmonic generation with quasi-phase-matching gratings in the presence of arbitrary dispersion,” J. Opt. Soc. Am. B, 17, 1420-1437 (2000).
    10. H. X. Miao, S. -D. Yang, C. Langrock, R. V. Roussev, M. M. Fejer, and A. M. Weiner, “Ultralow-power second-harmonic generation frequency-resolved optical gating using aperiodically poled lithium niobate waveguides [Invited],” J. Opt. Soc. Am. B, 25, A41-A53 (2008).
    11. A. M. Schober, G. Imeshev, and M. M. Fejer, “Tunable-chirp pulse compression in quasi-phase-matched second-harmonic generation,” Opt. Lett., 27, 1129-1131 (2002).
    12. L. Gallmann, G. Steinmeyer, U. Keller, G. Imeshev, M. M. Fejer, and J. P. Meyn, “Generation of sub-6-fs blue pulses by frequency doubling with quasi-phase-matching gratings,” Opt. Lett., 26, 614-616 (2001).
    13. W. H. Lin, and A. H. Kung, “Arbitrary waveform synthesis by multiple harmonics generation and phasing in aperiodic optical superlattices,” Opt. Express, 17, 16342-16351 (2009).
    14. J. S. Pelc, C. R. Phillips, D. Chang, C. Langrock, and M. M. Fejer, “Efficiency pedestal in quasi-phase-matching devices with random duty-cycle errors,” Opt. Lett., 36, 864-866 (2011).
    15. W. H. Peeters and M. P. van Exter, “Optical characterization of periodically-poled KTiOPO4,” Opt. Express, 16, 7344-7360 (2008).
    16. S. K. Johansen and P. Baldi, “Characterization of quasi-phase-matching gratings in quadratic media through double-pass second-harmonic power measurements,” J. Opt. Soc. Am. B, 21, 1137-1145 (2004).
    17. C. Langrock, private communication (2012).
    18. R. Trebino, in Frequency resolve optical gating: the measurement of ultrashort laser pulses (Kluwer Academic Publishers, Norwell, MA, 2000).
    19. L. Lepetit, G. Chériaux, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B, 12, 2467-2474 (1995).
    20. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B, 91, 343-348 (2008).
    21. M. Lawrence, “Lithium niobate integrated optics,” Rep. Prop. Phys, 56, 363-429 (1993).
    22. D. N. Fittinghoff, J. L. Bowie, J. N. Sweetser, R. T. Jennings, M. A. Krumbugel, K. W. DeLong, R. Trebino, and I. A. Walmsley, “Measurement of the intensity and phase of ultraweak, ultrashort laser pulses,” Opt. Lett., 21, 884-886 (1996).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE