簡易檢索 / 詳目顯示

研究生: 林巧奇
Lin, Chiao-Chi
論文名稱: 微奈米結構與材料在奈米科技之應用
The Application of Micro/Nano-Structures and Materials in Nanotechnology
指導教授: 李三保
Lee, Sanboh
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2010
畢業學年度: 99
語文別: 中文
論文頁數: 199
中文關鍵詞: 應力不穩定破裂導致微結構薄膜/基材系統加馬射線應力/應變奈米成型
外文關鍵詞: stress instability, fracture-induced structuring, film/substrate system, gamma-irradiation, stress/strain, nanopatterning
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文將對應力不穩定(stress instability)之應用、破裂導致微結構(fracture-induced structuring,FIS)之殘留表面應力、薄膜/基材系統之殘留應力、加馬射線材料改質與其退火動力學及破裂導致微結構之機制,進行一系列之奈米科技相關研究探討。
    首先以應力不穩定方式在PDMS(polydimethylsiloxane)基材上製作金薄膜之週期性波紋(wrinkling)微結構,由於該Au/PDMS波紋表面上同時具有裂縫與類差排之缺陷,故得以破裂力學理論研究裂縫在Au/PDMS波紋表面之傳播受類差排的影響。結果顯示裂縫與類差排間的交互作用是由類差排所產生的內部應力場所造成,我們並以冪次法則求得裂縫傳播速度與交互作用所產生的裂縫擴展力之間的經驗關係式。證實該方式可做為差排理論與破裂理論之實驗佐證的應用。
    第二部份中先初步探討破裂導致微結構之微奈米結構成型現象,再進一步以表面應力理論(surface stress theory)推導分析,推導出表觀(apparent)表面應力、微結構空間週期與薄膜膜厚之間關係的解析解,分析殘留表面壓應力對此一高分子薄膜表面形貌演化的影響。並將破裂導致微結構的實驗數據帶入理論之解析解,計算表觀表面應力與膜厚之間的相關性;其結果顯示表觀表面應力的大小隨著膜厚的縮減而下降,最後當膜厚趨近於零時,表觀表面應力將達到定值。若將表觀表面應力之值與高分子薄膜表面能進行比較,發現表面能之值是相對上很小的,顯見高分子薄膜表面能並非影響高分子薄膜在破裂導致微結構中形成表面形貌演化的影響因素。
    再來由於薄膜/基材系統中的殘留應力在奈米技術中亦是相當重要的,故我們用微機電系統(microelectromechanical,MEMS)加工方式製作氮化矽(silicon nitride,SiNx)微懸臂梁(microcantilever),然後在兩種不同溫度中以蒸鍍方式鍍上微奈米尺度膜厚之鋁薄膜後,以曲率量測的方式研究鋁/氮化矽(Al/SiNx)之薄膜/基材系統的殘留應力。發現室溫鍍鋁之微懸臂梁因鋁薄膜中的殘留壓應力而向氮化矽基材方向偏折;而105°C鍍鋁之微懸臂梁則會在薄膜對基材厚度比大於等於0.31時,在鋁薄膜中產生殘留張應力使得微懸臂梁向鋁薄膜方向偏折。其它力學上的特性如中性軸與彎曲軸也有一併探討。
    材料改質的研究則是以照射加馬射線(gamma-ray)來進行。我們使用電子順磁共振光譜(electron paramagnetic resonance,EPR)研究不同的加馬射線劑量照射後,對排聚苯乙烯(syndiotactic polystyrene,sPS)之自由基的形成與溫度相依的退火衰退機制。EPR光譜分析顯示sPS經加馬射線照射後有三種自由基形成,分別為三級苯基自由基(tertiary benzyl radical)、苯自由基(phenyl radical)與碳□超氧自由基(carbon-superoxide-centered radical);且此三種自由基皆遵循一階退火動力學機制,並以動力學理論分析計算這三種自由基之活化能。
    最後我們研究破裂導致微結構之條紋(grating)週期性微結構的破裂機制,實驗證實高分子薄膜上條紋週期性微結構之破裂方向遵循由外加分離負載(separating-load)所產生的平面最大剪應力的方向;並探討局部應力與其變動對條紋週期性微結構的空間週期與方向之影響。本部份亦探討破裂導致微結構之破裂成型特性,例如經加馬射線進行材料改質後之效應。並經由適當的分離負載之型式與高分子型狀/邊界條件之設計,以破裂導致不穩定方式製做出四分之ㄧ同心圓形條紋週期性微結構;證實本研究已可操控破裂導致微結構在高分子薄膜上的方向。期望破裂導致微結構得以更廣泛的應用在奈米科技。


    摘要 I 誌謝 III 目錄 IV 第一章:緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 不穩定性現象與其微奈米結構 2 1.2.2 奈米材料機械性質之量測 5 1.2.3 接觸角與表面能理論 8 1.2.4 輻射照射之材料改質 12 1.3 論文內容 13 表格 附圖 第二章:以波紋微結構為媒介研究類差排對裂縫傳播之影響 24 2.1 簡介 24 2.2 實驗方法與步驟 24 2.3 結果與討論 25 2.4 結論 27 表格 附圖 第三章:破裂導致微結構之成型與表面應力之探討 33 3.1 簡介 33 3.2 實驗方法與步驟 34 3.3 理論推導 36 3.3.1 統御方程式與邊界條件 36 3.3.2 彈性薄膜之形變 40 3.4 結果與討論 44 3.4.1 破裂導致微結構成型之探討 44 3.4.2 表面應力之計算與表面能之分析 46 3.5 結論 49 表格 附圖 第四章:薄膜/基材系統之殘留應力探討 67 4.1 簡介 67 4.2 實驗方法與步驟 68 4.3 結果與討論 69 4.3.1 實驗結果 69 4.3.2 殘留應力之計算與分析探討 70 4.4 結論 75 表格 附圖 第五章:材料經加馬射線照射後之高溫EPR光譜動力學分析 85 5.1 簡介 85 5.2 實驗與分析方法 86 5.3 結果與討論 87 5.3.1 電子順磁共振光譜分析與自由基探討 87 5.3.2 退火動力學分析 89 5.4 結論 92 表格 附圖 第六章:破裂導致微結構之機制 104 6.1 簡介 104 6.2 實驗方法與步驟 105 6.2.1 圖案化高分子薄膜之破裂導致微結構 105 6.2.2 高分子薄膜材料之加馬射線照射 105 6.2.3 原子力顯微鏡之表面形貌量測 106 6.2.4 接觸角量測 106 6.2.5 示差掃描量熱儀 106 6.2.6 奈米壓痕 107 6.3 結果與討論 107 6.3.1 破裂導致微結構之條紋方向 107 6.3.2 加馬射線對高分子薄膜之材料特性影響 109 6.3.3 材料特性效應與破裂導致微結構之破裂特性 110 6.3.4 破裂導致微結構之振幅分析 112 6.3.5 同心圓條紋之破裂導致微結構 113 6.4 結論 114 表格 附圖 第七章:總結與未來展望 139 7.1 總結 139 7.2 未來展望 141 參考文獻 142 附錄A:消防員防火配備之外層布料經紫外光與環境溫度/濕度測試之加速老化效應研究 164

    [1] S.Y. Chou, P.R. Krauss and P.J. Renstrom, Nanoimprint Lithography, J. Vac. Sci. Technolo. B, 14, 4129 (1996).
    [2] S.Y. Chou, P.R. Krauss and P.J. Renstrom, Imprint Lithography with 25-Nanometer Resolution, Science, 272, 85 (1996).
    [3] Y.N. Xia and G.M. Whitesides, Soft Lithography, Annu. Rev. Mater. Sci., 28, 153 (1998).
    [4] M.J. Fasolka and A.M. Mayes, Block Copolymer Thin Films: Physics and Applications, Annu. Rev. Mater. Res., 31, 323 (2001).
    [5] A. del Campo and E. Arzt, Chirality-Sensing Supramolecular Systems, Chem. Rev., 108, 911 (2008).
    [6] N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson and G. M. Whitesides, Spontaneous Formation of Ordered Structures in Thin Films of Metals Supported on an Elastomeric Polymer, Nature, 393, 146 (1998).
    [7] Jan Genzer and Jan Groenewold, Soft Matter with Hard Skin: From Skin Wrinkles to Templating and Material Characterization, Soft Matter, 2, 310 (2006).
    [8] N. Bowden, W. T. S. Huck, K. E. Paul and G. M. Whitesides, The Controlled Formation of Ordered, Sinusoidal Structures by Plasma Oxidation of an Elastomeric Polymer, Appl. Phys. Lett., 75, 2557 (1999).
    [9] K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan and J. Genzer, Nested Self-similar Wrinkling Patterns in Skins, Nat. Mater., 4, 293 (2005).
    [10] T. Ohzono and M. Shimomura, Defect-mediated Stripe Reordering in Wrinkles upon Gradual Changes in Compression Direction, Phys. Rev. E, 73, 040601 (2006).
    [11] T. Ohzono and M. Shimomura, Geometry-Dependent Stripe Rearrangement Processes Induced by Strain on Preordered Microwrinkle Patterns, Langmuir, 21, 7230 (2005).
    [12] T. Ohzono, H. Watanabe, R. Vendamme, C. Kamaga, T. Kunitake, T. Ishihara and M. Shimomura, Spatial Forcing of Self-Organized Microwrinkles by Periodic Nanopatterns, Adv. Mater., 19, 3229 (2007).
    [13] T. Ohzono, Chaos, Control of Cooperative Switching of Microwrinkle Orientations by Nanopatterns, 19, 033104 (2009).
    [14] E. Schäffer, T. T. Albrecht, T. P. Russell and U. Steiner, Electrically Induced Structure Formation and Pattern Transfer, Nature, 403, 874 (2000).
    [15] N. Wu and W.B. Russel, Micro- and Nano-patterns Created via Electrohydrodynamic Instabilities, Nano Today, 4, 180 (2009).
    [16] E. Schäffer, S. Harkema, M. Roerdink, R. Blossey and U. Steiner, Morphological Instability of a Confined Polymer Film in a Thermal Gradient, Macromolecules, 36, 1645 (2003).
    [17] E. Schäffer, S. Harkema, R. Blossey and U. Steiner, Temperature-gradient–induced Instability in Polymer Films, Europhys. Lett., 60, 255 (2002).
    [18] E. Schäffer, S. Harkema, M. Roerdink, R. Blossey and U. Steiner, Thermomechanical Lithography_Pattern Replication Using a Temperature Gradient Driven Instability, Adv. Mater., 15, 514 (2003).
    [19] E. Schäffer and U. Steiner, Acoustic Instabilities in Thin Polymer Films, Eur. Phys. J. E, 8, 347 (2002).
    [20] M. D. Morariu, E. Schäffer and U. Steiner, Molecular Forces Caused by the Confinement of Thermal Noise, Phys. Rev. Lett., 92, 156102 (2004).
    [21] M. D. Morariu, E. Schäffer and U. Steiner, Capillary Instabilities by Fluctuation Induced Forces, Eur. Phys. J. E, 12, 375 (2003).
    [22] S.Y. Chou, P.R. Krauss and P.J. Renstrom, Imprint of Sub-25 nm Vias and Trenches in Polymers, Appl. Phys. Lett., 67, 3114 (1995).
    [23] S.Y. Chou, L. Zhuang and L. Guo, Lithographically Induced Self-construction of Polymer Microstructures, Appl. Phys. Lett., 75, 1004 (1999).
    [24] S.Y. Chou and L. Zhuang, Lithographically Induced Self-assembly of Periodic Polymer Micropillar Arrays, J. Vac. Sci. Technol. B, 17, 3197 (1999).
    [25] H. Schift, L.J. Heyderman, M.A. der Maur and J. Gobrecht, Pattern Formation in Hot Embossing of Thin Polymer Films, Nanotechnology, 12, 173 (2001).
    [26] L.J. Heyderman, H. Schift, C. David, J. Gobrecht and T. Schweizer, Flow Behaviour of Thin Polymer Films Used for Hot Embossing Lithography, Microelec. Eng., 54, 229 (2000).
    [27] J. Peng, Y. Han, Y. Yang and B. Li, Pattern Formation in Polymer Films Under the Mask, Polymer, 44, 2379 (2003).
    [28] J. Peng, H. Wang, B. Li and Y. Han, Pattern Formation in a Confined Polymer Film Induced by a Temperature Gradient, Polymer, 45, 8013 (2004).
    [29] H.C. Scheer and H. Schulz, A Contribution to the Flow Behaviour of Thin Polymer Films During Hot Embossing Lithography, Microelec. Eng., 56, 311 (2001).
    [30] L. Bendfeldt, H. Schulz, N. Roos and H.C. Scheer, Groove Design of Vacuum Chucks for Hot Embossing Lithography, Microelec. Eng., 61-62, 455 (2002).
    [31] C. Perret, C. Gourgon, F. Lazzarion, J. Tallal, S. Landis and R. Pelzer, Characterization of 8-in. Wafers Printed by Nanoimprint Lithography, Microelec. Eng., 73-74, 172 (2004).
    [32] P.G. Saffman and G. Taylor, The Penetration of a Fluid into a Porous Medium or Hele-Shaw Cell Containing a More Viscous Liquid, Proc. R. Soc. A, 245, 312 (1958).
    [33] A. Ghatak, M. K. Chaudhury, V. Shenoy and A. Sharma, Meniscus Instability in a Thin Elastic Film, Phys. Rev. Lett., 85, 4329 (2000).
    [34] W. Mönch and S. Herminghaus, Elastic Instability of Rubber Films Between Solid Bodies, Europhys. Lett., 53, 525 (2001).
    [35] A. Ghatak and M. K. Chaudhury, Adhesion-Induced Instability Patterns in Thin Confined Elastic Film, Langmuir, 19, 2621 (2003).
    [36] A. Ghatak, Confinement-induced Instability of Thin Elastic Film, Phys. Rev. E, 73, 041601 (2006).
    [37] V. Shenoy and A. Sharma, Pattern Formation in a Thin Solid Film with Interactions, Phys. Rev. Lett., 86, 119 (2001).
    [38] J. Sarkar, V. Shenoy, and A. Sharma, Spontaneous Surface Roughening Induced by Surface Interactions Between Two Compressible Elastic Films, Phys. Rev. E, 67, 031607 (2003).
    [39] R. Mukherjee, R. C. Pangule, A. Sharma and I. Banerjee, Contact Instability of Thin Elastic Films on Patterned Substrates, J Chem. Phys., 127, 064703 (2007).
    [40] J. Huang, M. Juszkiewicz, W. H. de Jeu, E. Cerda, T. Emrick, N. Menon and T. P. Russell, Capillary Wrinkling of Floating Thin Polymer Films, Science, 317, 650 (2007).
    [41] T. Tanaka, S.T. Sun, Y. Hirokawa, S. Katayama, J. Kucera, Y. Hirose and T. Amiya, Mechanical Instability of Gels at the Phase Transition, Nature, 325, 796 (1987).
    [42] K.F. Chou, S. Lee and J.P. Harmon, Evolution of Surface Morphology in 2-Hydroxyethyl Methacrylate Copolymer Exposed to □ Radiation, Macromolecules, 36, 5683 (2003).
    [43] L.F. Pease III, P. Deshpande, Y. Wang, W.B. Russel and S.Y. Chou, Self-formation of Sub-60-nm Half-pitch Gratings with Large Areas Through Fracturing, Nat. Nanotechnol., 2, 545 (2007).
    [44] B. Freund, Breaking up is a Grating Experience, Nat. Nanotechnol., 2, 537 (2007).
    [45] T.C. Lin, L.C. Huang , T.R. Chou and C.Y. Chao, Alignment Control of Liquid Crystal Molecules Using Crack Induced Self-assembled Grooves, Soft Matter, 5, 3672 (2009).
    [46] E. Martinez, Stem Cell Differentiation by Functionalized Micro- and Nanostructured Surfaces, Nanomedicine, 4, 65 (2009).
    [47] W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 7, 1564 (1992).
    [48] W.C. Oliver and G.M. Pharr, Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology J. Mater. Res., 19, 3 (2004).
    [49] T.S. Perova, K. Lyutovich, E. Kasper, A. Waldron, M. Oehme, R.A. Moore, Stress Determination in Strained-Si Grown on Ultra-thin SiGe Virtual Substrates, Mater. Sci. Eng. B, 135, 192 (2006).
    [50] W. D. Nix, Mechanical Properties of Thin Films, Metall. Trans. A, 20, 2217 (1989).
    [51] W. Fang and J.A. Wickert, Comments on Measuring Thin-film Stresses Using Bi-layer Micromachined Beams, J. Micromech. Microeng., 5, 276 (1995).
    [52] W. Fang and J.A. Wickert, Determining Mean and Gradient Residual Stresses in Thin Films Using Micromachined Cantilevers, J. Micromech. Microeng., 6, 301 (1996).
    [53] T. Young, An Essay on the Cohesion of Fluids, Phil. Trans. R. Soc. Lond., 95, 65 (1805).
    [54] F.M. Fowkes, Determination of Interfacial Tensions, Contact Angles, and Dispersion Forces in Surfaces by Assuming Additivity of Intermolecular Interactions in Surfaces, J. Phys. Chem., 66, 382 (1962).
    [55] F.M. Fowkes, Comments on “Calculation of Cohesive and Adhesive Energies” by J.F. Padday and N.D. Uffindell, J. Phys. Chem., 72, 3700 (1968).
    [56] I. Langmuir, Phenomena, Atoms and Molecules, Philosophical Library, New York, (1950).
    [57] http://www.firsttenangstroms.com
    [58] H.W. Fox and W.A. Zisman, The Spreading of Liquids on Low-energy Surfaces. III. Hydrocarbon Surfaces, J. Coll. Sci., 7, 109 (1952).
    [59] D.K. Owens and R.C. Wendt, Estimation of the Surface Free Energy of Polymers, J. Appl. Polym. Sci., 13, 1741 (1969).
    [60] C.J. van Oss, M.J. Chaudhury and R.J. Good, Monopolar Surfaces, Adv. Colloid Interface Sci., 28, 35, (1987).
    [61] C.J. van Oss, M.J. Chaudhury and R.J. Good, Interfacial Lifshitz-van der Waals and Polar Interactions in Macroscopic Systems, Chem. Rev., 88, 927, (1988).
    [62] C.J. van Oss, M.J. Chaudhury and R.J. Good, Additive and Nonadditive Surface Tension Components and the Interpretation of Contact Angles, Langmuir, 4, 884, (1988).
    [63] S. Wu, Calculation of Interfacial Tension in Polymer Systems, J. Polymer Sci. Part C, 34, 19 (1971).
    [64] C.C. Sun, S.C. Lee, S.B. Dai, S.L. Tien, C.C. Chang and Y.S. Fu, Surface Free Energy of Non-stick Coatings Deposited Using Closed Field Unbalanced Magnetron Sputter Ion Plating, Appl. Surf. Sci., 253, 4094 (2007).
    [65] J. Comyn, F.D. Buyl and C. Subramanian, The Effect of Contact with PTFE Tape on the Moisture Cure of an Alkoxysilicone Sealant, Int. J. Adhes. Adhes., 22, 331 (2002).
    [66] Z. Zhong, S. Yin, C. Liu, Y. Zhong, W. Zhang, D. Shi and C. Wang, Surface Energy for Electroluminescent Polymers and Indium-tin-oxide, Appl. Surf. Sci., 207, 183 (2003).
    [67] M. Järn, C.M. Tåg, J. Järnström, B. Granqvist and J.B. Rosenholm, Alternative Models for Determining the Surface Energy Components in Offset Printing, J. Colloid Interf. Sci., 301, 668 (2006).
    [68] A.A. Thorpe, T.G. Nevell and J. Tsibouklis, Surface Energy Characteristics of Poly(methylpropenoxyalkylsiloxane) Film Structures, Appl. Surf. Sci., 137, 1 (1999).
    [69] Q. Zhao, Y. Liu and E.W. Abel, Effect of Temperature on the Surface Free Energy of Amorphous Carbon Films, J. Colloid Interf. Sci., 280, 174 (2004).
    [70] S. Nuriel, L. Liu, A.H. Barber and H.D. Wagner, Direct Measurement of Multiwall Nanotube Surface Tension, Chem. Phys. Lett., 404, 263 (2005).
    [71] V. Gurau, M.J. Bluemie, E.S.D. Castro, Y.M. Tsou, J.A. Mann Jr. and T.A. Zawodzinski Jr., Characterization of Transport Properties in Gas Diffusion Layers for Proton Exchange Membrane Fuel Cells 1. Wettability (Internal Contact Angle to Water and Surface Energy of GDL Fibers), J. Power Sources, 160, 1156 (2006).
    [72] S. Guruvenket, G.R.S. Iyer, L. Shestakova, P. Morgen, N.B. Larsen and G.M. Rao, Fluorination of Polymethylmethaacrylate with Tetrafluoroethane Using DC Glow Discharge Plasma, Appl. Surf. Sci., 254, 5722 (2008).
    [73] B. Granqvist, M. Järn and J.B. Rosenholm, Critical Evaluation of the Surface Energy Components of Solids, Colloid Surf. A-Physicochem. Eng. Asp., 296, 248 (2007).
    [74] M. Zenkiewicz, Comparative Study on the Surface Free Energy of a Solid Calculated by Different Methods, Polym. Test, 26, 14 (2007).
    [75] D.J.T. Hill, J.H. O'Donnell, P.J. Pomery and G. Saadat, Degradation of Poly(2-hydroxyethyl methacrylate) by Gamma Irradiation, Radiat. Phys. Chem., 48, 605 (1996).
    [76] Y.S. Lin, S. Lee, B.C. Lin and C.P. Cheng, EPR Studies of High Dose Gamma-irradiated Poly(methyl methacrylate), Mater. Chem. Phys., 78, 847 (2003).
    [77] T. Wu, S. Lee and W.C. Chen, Acetone Absorption in Irradiated Polycarbonate, Macromolecules, 28, 5715 (1995).
    [78] C.B. Lin and S. Lee, Poly(methyl methacrylate) Interpenetrating Cell Model, Polymer, 31, 2793 (1996).
    [79] C.K. Liu, C.J. Tsai, C.T. Hu and S. Lee, Annihilation Kinetics of Color Center in Irradiated Syndiotactic Polystyrene at Elevated Temperatures, Polymer, 46, 5645 (2005).
    [80] D.L. Staebler and C.R. Wronski, Reversible Conductivity Changes in Discharge‐produced Amorphous Si, Appl. Phys. Lett., 31, 292 (1977).
    [81] D.L. Staebler and C.R. Wronski, Optically Induced Conductivity Changes in Discharge‐produced Hydrogenated Amorphous Silicon, J. Appl. Phys., 51, 3262 (1980).
    [82] J. Chin, E. Byrd, N. Embree, J. Garver, B. Dickens, T. Finn and J. Martin, Accelerated UV Weathering Device Based on Integrating Sphere Technology, Rev. Sci. Instrum., 75, 4951 (2004).
    [83] K.S. Sellins and J.J. Cohen, Gene Induction by Gamma-irradiation Leads to DNA Fragmentation in Lymphocytes, J. Immunol., 139, 3199 (1987).
    [84] M. Watanabe, H. Shirai and T. Hirai, Wrinkled Polypyrrole Electrode for Electroactive Polymer Actuators, J. Appl. Phys., 92, 4631 (2002).
    [85] S.P. Lacour, S. Wagner, Z.Y. Huang and Z. Suo, Stretchable Gold Conductors on Elastomeric Substrates, Appl. Phys. Lett., 82, 2404 (2003).
    [86] E. Cerda and L. Mahadevan, Geometry and Physics of Wrinkling, Phys. Rev. Lett., 90, 074302 (2003).
    [87] W.T.S. Huck, N. Bowden, P. Onck, T. Pardoen, J.W. Hutchinson and G.M. Whitesides, Ordering of Spontaneously Formed Buckles on Planar Surfaces, Langmuir 16, 3497 (2000).
    [88] A.G. Cullis, A.J. Pidduck and M.T. Emeny, Misfit Dislocation Sources at Surface Ripple Troughs in Continuous Heteroepitaxial Layers, Phys. Rev. Lett., 75, 2368 (1995).
    [89] F. Katzenberg, Irradiation- and Strain-induced Self-organization of Elastomer Surfaces, Macromol. Mater. Eng., 286, 26 (2001).
    [90] A.L. Volynskii, S. Bazhenov, O.V. Lebedeva and N.F. Bakeev, Mechanical Buckling Instability of Thin Coatings Deposited on Soft Polymer Substrates, J. Mater. Sci., 35, 547 (2000).
    [91] A.I. Fedorchenko, A.B. Wang, V.I. Mashanov, W.P. Huang and H.H. Cheng, Strain-induced Wrinkling on SiGe Free Standing Film, Appl. Phys. Lett., 89, 043119 (2006).
    [92] R. Huang and Z. Suo, Wrinkling of a Compressed Elastic Film on a Viscous Layer, J. Appl. Phys., 91, 1135 (2002).
    [93] V. Lakshmanan and J.C.M. Li, Edge Dislocations Emitted along Inclined Planes from a Mode I Crack, Mater. Sci. Eng. A, 104, 95 (1988).
    [94] S.D. Wang and S. Lee, An Analysis of the Elastic Interaction Between an Edge Dislocation and an Internal Crack, Mater. Sci. Eng. A, 130, 1 (1990).
    [95] N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory, Noordhoff, Groningen, Chap. 4. (1963).
    [96] D. Broek, Elementary Engineering Fracture Mechanics, Martinus, Nijhoff, Boston, p. 119 (1982).
    [97] D. Hull and D. J. Bacon, Introduction to Dislocation, 4th ed. Butterworth, Oxford, Chap. 3. (2001).
    [98] R. Shuttleworth, The Surface Tension of Solids, Proc. Phys. Soc., London A, 63, 444 (1950).
    [99] E. Orowan, Surface Energy and Surface Tension in Solids and Liquids, Proc. R. Soc. London, Ser. A, 316, 473 (1970).
    [100] C. Herring, The Physics of Powder Metallurgy, W.E. Kingston, Ed., McGraw-Hill: New York, (1951).
    [101] F. Andreussi and M.E. Gurtin, On the Wrinkling of a Free Surface, J. Appl. Phys., 48, 3798 (1977).
    [102] A.I. Murdoch, On Wrinkling Induced by Surface Stress at the Boundary of an Infinite Circular Cylinder, Int. J. Eng. Sci., 16, 131 (1978).
    [103] F.Q. Yang, Size-dependent Effective Modulus of Elastic Composite Materials: Spherical Nanocavities at Dilute Concentrations, J. Appl. Phys., 95, 3516 (2004).
    [104] F.Q. Yang, Effect of Interfacial Stresses on the Elastic Behavior of Nanocomposite Materials, J. Appl. Phys., 99, 054306 (2006).
    [105] A. Ghatak and M.K. Chaudhury, Critical Confinement and Elastic Instability in Thin Solid Films, J. Adhes., 86, 679 (2007).
    [106] R. Huang, C.M. Stafford, B.D. Vogt, Effect of Surface Properties on Wrinkling of Ultrathin Films, ASCE J. Aero. Eng., 20, 38 (2007).
    [107] http://www.spmtips.com/
    [108] C.C. Lin, Microlens Array for the Enhancement of External Quantum Efficiency of Planar Light-emitting Devices, Master Thesis, National Dong Hwa University, Hualien, Taiwan, (2005).
    [109] M.E. Gurtin and A.I. Murdoch, Effect of Surface Stress on Wave Propagation in Solids, J. Appl. Phys., 47, 4414 (1976).
    [110] R. Thomson, T.J. Chuang and I.H. Lin, The Role of Surface Stress in Fracture, Acta Metall., 34, 1133 (1986).
    [111] J.R. Rice and T.J. Chuang, Energy Variations in Diffusive Cavity Growth, J. Am. Ceram. Soc., 64, 46 (1981).
    [112] T.J. Chuang, Effect of Surface Tension on the Toughness of Glass, J. Am. Ceram. Soc., 70, 160 (1987).
    [113] F. Yang and J.C.M. Li, Langmuir, Adhesion of a Rigid Punch to an Incompressible Elastic Film, 17, 6524 (2001).
    [114] C. J. Lawrence, The Mechanics of Spin Coating of Polymer Films, Phys. Fluids, 31, 2786 (1988).
    [115] C.K. Huang, W.M. Lou, C.J. Tsai, T.C. Wu, H.Y. Lin, Mechanical Properties of Polymer Thin Film Measured by the Bulge Test, Thin Solid Films, 515, 7222 (2007).
    [116] C.H. Hsueh, Modeling of Elastic Deformation of Multilayers Due to Residual Stresses and External Bending, J. Appl. Phys., 91, 9652 (2002).
    [117] W. Fang and C.Y. Lo, On the Thermal Expansion Coefficients of Thin Films, Sens. Actuators A-Phys., 84, 310 (2000).
    [118] S.G. Mayr and K. Samwer, Model for Intrinsic Stress Formation in Amorphous Thin Films, Phys. Rev. Lett., 87, 036105 (2001).
    [119] R. Koch, The Intrinsic Stress of Polycrystalline and Epitaxial Thin Metal Films, J. Phys.: Condens. Matter, 6, 9519 (1994).
    [120] W.D. Nix and B.M. Clemens, Crystallite Coalescence: A Mechanism for Intrinsic Tensile Stresses in Thin Films, J. Mater. Res., 14, 3467 (1999).
    [121] T.Y. Zhang, S. Lee, L.J. Guido and C.H. Hsueh, Criteria for Formation of Interface Dislocations in a Finite Thickness Epilayer Deposited on a Substrate, J. Appl. Phys., 85, 7579 (1999).
    [122] R.C. Cammarata and T.M. Trimble, Surface Stress Model for Intrinsic Stresses in Thin Film, J. Mater. Res., 15, 2468 (2000).
    [123] M. Pletea, R. Koch, H. Wendrock, R. Kaltofen and O.G. Schmidt, In Situ Stress Evolution During and After Sputter Deposition of Al Thin Films, J. Phys.: Condens. Matter, 21, 1 (2009).
    [124] S.P. Kim, H.M. Choi and S.K. Choi, A Study on the Crystallographic Orientation with Residual Stress and Electrical Property of Al Films Deposited by Sputtering, Thin Solid Films, 322, 298 (1998).
    [125] J.H. Lee, W.M. Kim, T.S. Lee, M.K. Chung, B.K. Cheong and S.G. Kim, Mechanical and Adhesion Properties of Al/AlN Multilayered Thin Films, Surf. Coat. Technol., 133-134, 220 (2000).
    [126] C.H. Hsueh and S. Lee, Effects of Viscous Flow on Residual Stresses in Film/Substrate Systems, J. Appl. Phys., 91, 2760 (2002).
    [127] Y.Y. Hu and W.M. Huang, Elastic and Elastic Plastic Analysis of Multilayer Thin Films: Closed-form Solutions, J. Appl. Phys., 96, 4154 (2004).
    [128] C.H. Hsueh, S. Lee and H.Y. Lin, Analyses of Mode I Edge Delamination by Thermal Stresses, Compos. Pt. B-Eng., 37, 1 (2006).
    [129] J.C. Tsang, P.M. Mooney, F. Dacol and J.O. Chu, Measurements of Alloy Composition and Strain in Thin GexSi1-x Layers, J. Appl. Phys., 75, 8098 (1994).
    [130] T. S. Perova, K. Lyutovich, E. Kasper, A. Waldron, M. Oehme and R.A. Moore, Stress Determination in Strained-Si Grown on Ultra-thin SiGe Virtual Substrates, Mater. Sci. Eng. B, 135, 192 (2006).
    [131] Y. Zoo, D. Adams, J.W. Mayer and T.L. Alford, Investigation of Coefficient of Thermal Expansion of Silver Thin Film on Different Substrates Using X-ray Diffraction, Thin Solid Films, 513, 170 (2006).
    [132] W. Fang, H.C. Tsai and C.Y. Lo, Determining Thermal Expansion Coefficients of Thin Films Using Micromachined Cantilevers, Sens. Actuators, 77, 21 (1999).
    [133] M.T.K. Hou and R. Chen, Effect of Width on the Stress-induced Bending of Micromachined Bilayer Cantilevers, J. Micromech. Microeng., 13, 141 (2003).
    [134] J. McCarthy, Z. Pei, M. Becker and D. Atteridge, FIB Micromachined Submicron Thickness Cantilevers for the Study of Thin Film Properties, Thin Solid Films, 358, 146 (2000).
    [135] F.L. Riley, Silicon Nitride and Related Materials, J. Am. Ceram. Soc., 83, 245 (2000).
    [136] S. Akamine, R.C. Barrett and C.F. Quate, Improved Atomic Force Microscope Images Using Microcantilevers with Sharp Tips, Appl. Phys. Lett., 57, 316 (1990).
    [137] R.J. Grow, S.C. Minne, S.R. Manalis and C.F. Quate, Silicon Nitride Cantilevers with Oxidation-Sharpened Silicon Tips for Atomic Force Microscopy, J. Microelectromech. Syst., 11, 317 (2002).
    [138] A. Khan, J. Philip and P. Hess, Young’s Modulus of Silicon Nitride Used in Scanning Force Microscope Cantilevers, J. Appl. Phys., 95, 1667 (2004).
    [139] M.B. Viani, T.E. Schäffer, A. Chand, M. Rief, H.E. Gaub and P.K. Hansma, Small Cantilevers for Force Spectroscopy of Single Molecules, J. Appl. Phys., 86, 2258 (1999).
    [140] Y. Toivola, J. Thurn, R.F. Cook, G. Cibuzar and K. Roberts, Influence of Deposition Conditions on Mechanical Properties of Low-pressure Chemical Vapor Deposited Low-stress Silicon Nitride Films, J. Appl. Phys., 94, 6915 (2003).
    [141] S. Habermehl, Stress Relaxation in Si-rich Silicon Nitride Thin Films, J. Appl. Phys., 83, 4672 (1998).
    [142] W. Shi, H. Zhang, G. Zhang and Z. Li, Modifying Residual Stress and Stress Gradient in LPCVD Si3N4 Film with Ion Implantation, Sens. Actuators A, 130-131, 352 (2006).
    [143] H. Bouridah, F. Mansour, M.R. Beghoul, R. Mahamdi and P. Temple-Boyer, Properties of Non-stoichiometric Nitrogen Doped LPCVD Silicon Thin Films, Cryst. Res. Technol., 45, 119 (2010).
    [144] W.H. Chuang, T. Luger, R.K. Fettig and R. Ghodssi, Mechanical Property Characterization of LPCVD Silicon Nitride Thin Films at Cryogenic Temperatures, J. Microelectromech. Syst., 13, 870 (2004).
    [145] C.K. Huang, W.M. Lou, C.J. Tsai, T.C. Wu and H.Y. Lin, Mechanical Properties of Polymer Thin Film Measured by the Bulge Test, Thin Solid Films, 515, 7222 (2007).
    [146] G.G. Stoney, The Tension of Metallic Films Deposited by Electrolysis, Proc. R. Soc. London, Ser. A, 82, 172 (1909).
    [147] C.A. Klein, How Accurate are Stoney’s Equation and Recent Modifications, J. Appl. Phys., 88, 5487 (2000).
    [148] N. Ishihara, T. Seimiya, M. Kuramoto, M. Uoi, Crystalline Syndiotactic Polystyrene, Macromolecules, 19, 2464 (1986).
    [149] L.A. Wall and D.W. Brown, Gamma Irradiation of Polymethyl Methacrylate and Polystyrene, J. Phys. Chem., 61, 129 (1957).
    [150] R.L. Clough and J.S. Wallace, In: T. Dombeck, V. Kelly, G. Yost, editors. Symposium on Detector Research and Development for the Uperconducting Super Collider. Texas, World Scientific, (1990).
    [151] J.S. Wallace, M.B. Sinclair and K.T. Gillen, Color Center Annealing in □-irradiated Polystyrene, Under Vacuum and Air Atmospheres, Radiat. Phys. Chem., 41, 85 (1993).
    [152] J. Chiang, C.T. Hu and S. Lee, Isothermal Annealing of Color Centers in Irradiated Polystyrene in Vacuum and Air Atmospheres, Mater. Chem. Phys., 70, 61 (2001).
    [153] V. Svorcik, V. Rybka, V. Hnatowicz, M. Novotna and M. Vognar, Electron Beam Modification of Polyethylene and Polystyrene, J. Appl. Polym. Sci. 64, 2529 (1997).
    [154] C.T. Tsao, The Mechanical Properties of Syndiotactic Polystyrene. Master Thesis, Hsinchu, Taiwan, National Tsing Hua University, (2000).
    [155] Y. Hama and K. Shinohara, Electron Spin Resonance Studies of Polycarbonate Irradiated by □‐rays and Ultraviolet Light, J. Polym. Sci. Part A-1: Polym. Chem., 8, 651 (1970).
    [156] C. David, W. Piret, M. Sakaguchi and G. Geuskens, Electron Spin Resonance Study of Polymer Degradation, 2. Photolysis at 365 nm of Polystyrene Containing Benzophenone, Makromol. Chem., 179, 181 (1978).
    [157] G.S.P. Verma and A. Peterlin, Electron Spin Resonance Spectrum of Gamma Irradiated Polystyrene, Polym. Lett., 7, 587 (1969).
    [158] L. Harrah, In: G. Adler, editor. Organic Solid State Chemistry. New York, Gordon and Breach Science Publishers, p.197 (1968).
    [159] R. Florin, L.A. Wall and D.W. Brown, Free Radicals in Gamma-irradiated Polystyrenes, Trans. Faraday. Soc., 56, 1304 (1960).
    [160] W.W. Parkinson and R.M. Keyser. In: M. Dole, editor. The Radiation Chemistry of Macromolecules. New York, Academic Press, [chapter 5] (1973).
    [161] M. Chipara, R. Benson, M.D. Chipara and J.R. Reyes, ESR Investigations on Irradiated Polystyrene, Nucl. Instrum. Methods Phys. Res. B, 208, 390 (2003).
    [162] R.M. Brinston, Gaining the Competitive Edge with Gamma Sterilization, Med. Device Technol., 2, 28 (1991).
    [163] R.M. Brinston and B.K. Wilson, Converting to Gamma-radiation Sterilization: An Overview for Medical Device Manufacturers, Med. Device Technol., 4, 18 (1993).
    [164] C.E. Holy, C. Cheng, J.E. Davies and M.S. Shoichet, Optimizing the Sterilization of PLGA Scaffolds for Use in Tissue Engineering, Biomaterials, 22, 25 (2001).
    [165] M.B. Sintzel, K. Schwach-Abdellaoui, K. Mäder, R. Stösser, J. Heller and C. Tabatabay et al., Influence of Irradiation Sterilization on a Semi-solid Poly(orthoester), Int. J. Pharm., 175, 165 (1998).
    [166] E. Sendra, M. Capellas, B. Guamis, X. Felipe, M. MorMur and R. Pla, Revisión: Irradiación de Alimentos.—Aspectos Generales/Review: Food Irradiation.—General Aspects, Food Sci. Technol. Int., 2, 1 (1996).
    [167] C.C. Lee, EPR in Irradiated Syndiotactic Polystyrene at Elvated Temperatures. Master Thesis, Hsinchu, Taiwan, National Tsing Hua University, (2005).
    [168] N.K. Singh, P.L.A. Popelier and P.J. O’Malley, Substituent Effects on the Stability of Para-substituted Benzyl Radicals, Chem. Phys. Lett., 426, 219 (2006).
    [169] R.A. Jackson and M. Sharifi, Stabilization of Benzylic Radicals by Substituents: An EPR Study of Para-substituted Benzyl Radicals, J. Chem. Soc. Perkin Trans. II, 775, (1996).
    [170] P.H. Kasai, E. Hedaya, E.B. Whipple, Electron Spin Resonance Study of Phenyl Radicals Isolated in an Argon Matrix at 4K, J. Am. Chem. Soc., 91, 4364 (1969).
    [171] D.N.R. Rao and M.C.R. Symons, Substituted Benzene Cations Formed by Radiolysis: An Electron Spin Resonance Study, J. Chem. Soc. Perkin Trans. II, 991, (1985).
    [172] F. Wilkinson, Chemical Kinetics and Reaction Mechanisms. New York, Van Nostrand Reinhold, [chapters 3 and 4] (1980).
    [173] Schäffer, E. Instabilities in thin polymer films: structure formation and pattern transfer. PhD Dissertation, Universität Konstanz (2001).
    [174] C.K. Liu, S. Lee, L.P. Sung and T. Nguyen, Load-displacement Relations for Nanoindentation of Viscoelastic Materials, J. Appl. Phys., 100, 033503 (2006).
    [175] B.J. Briscoe, L. Fiori and E. Pelillo, Nano-indentation of Polymeric Surfaces, J. Phys. D: Appl. Phys., 31, 2395 (1998).
    [176] R. Quinson, J. Perez, M. Rink and A. Pavan, Yield Criteria for Amorphous Glassy Polymers, J. Mater. Sci., 32, 1371 (1997).
    [177] Z.F. Zhang, G.H.J. Eckert and L. Schultz, Fracture Mechanisms in Bulk Metallic Glassy Materials, Phys. Rev. Lett., 91, 045505 (2003).
    [178] M.A. Meyer and K.K. Chawla, Mechanical Behaviour of Materials, Prentice-Hall Inc., New Jersey, (1999).
    [179] L.M. Clayton, T.G. Gerasimov, M. Cinke, M. Meyyappan and J.P. Harmon, Gamma Radiation Effects on the Glass Transition Temperature and Mechanical Properties of PMMA/soot nanocomposites, Polym. Bull., 52, 259 (2004).
    [180] S.R. Tatro, G.R. Baker, K. Bisht and J.P. Harmon, A MALDI, TGA, TG/MS, and DEA Study of the Irradiation Effects on PMMA, Polymer, 44, 167 (2003).
    [181] H.J. Lee, S. Hur, S.W. Han, J.H. Kim, C.S. Oh and S.G. Ko, The Mechanical Properties of Thin Polymer Film for Nanoimprinting Lithography by Nanoindentation, Proceeding of the 2003 Third IEEE conference on Nanotechnology, San Francisco, CA USA, August 12–14, 2, 546 (2003).
    [182] H. Zeng, B. Zhao, J.N. Israelachvili and M. Tirrell, Liquid- to Solid-Like Failure Mechanism of Thin Polymer Films at Micro- and Nanoscales, Macromolecules, 43, 538 (2010).
    [183] H. Chai, A Note on Crack Trajectory in an Elastic Strip Bounded by Rigid Substrates, Int. J. Fracture, 32, 211 (1987).
    [184] B. Cotterell and J.R. Rice, Slightly Curved or Kinked Cracks, Int. J. Fracture, 16, 155 (1980).
    [185] A.R. Akisanya and N.A. Fleck, Brittle Fracture of Adhesive Joints, Int. J. Fracture, 58, 93 (1992).
    [186] N.A. Fleck, J.W. Hutchinson and Z. Suo, Crack Path Selection in a Brittle Adhesive Layer, Int. J. Solids Struct., 27, 1683 (1991).
    [187] Y. Cai and B.Z. Newby, Fracture-induced Formation of Parallel Silicone Strips, J. Mater. Res., 25, 803 (2010).
    [188] Z.C. Xia and J.W. Hutchinson, Crack Patterns in Thin Films, J. Mech. Phys. Solids, 48, 1107 (2000).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE