簡易檢索 / 詳目顯示

研究生: 沈志達
Chih-Ta Shen
論文名稱: 反鐵磁/鐵磁/奈米級氧化層/鐵磁多層膜結構中耦合力機制之探討
Coupling Mechanism in AFM/FM/NOL/FM systems
指導教授: 賴志煌
Chih-Huang Lai
林秀豪
林敏聰
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 1冊
中文關鍵詞: 自旋閥正交耦合力奈米級氧化層
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗發現當我們在自旋閥結構中加入Fe的奈米級氧化層(Fe-NOL)後,針對上被固定層而言,此時同時存在著來自於反鐵磁所提供的單方向異向力以及奈米級氧化層所造成之正交耦合力,也由於此時兩力共存的影響使得在磁阻曲線上所呈現的複雜性。而爲了更進一步去了解在Fe-NOL系統中的機制,我們變改變不同膜層條件,以及在不同角度下量測,並且爲了去除自由層所造成的膜層複雜性,因此設計了單純AFM/FM/NOL/FM的結構直接觀察在Fe-NOL系統中上下被固定層的磁矩排列狀態。
    我們並利用在不同角度下殘存磁化量的變化來觀察此系統的特性,也藉由此分析得到單方向以及九十度處單軸異向性共存的資訊。而同時可以偵測Mx,My訊號的vector coil量測法也是我們用來驗證本實驗的磁矩翻轉機制的工具。而爲了了解Fe-NOL材料性質以及其磁性質,XPS用來偵測Fe-NOL層中Fe價數的狀態;同步輻射中心XMCD針對Fe-NOL訊號觀察其磁性質,以及SPEM量測判讀其Fe-NOL中Fe價數在Fe-NOL空間分布的情形。


    目錄 第一章 前言 第二章 文獻回顧 第三章 實驗方法與分析儀器 第四章 實驗結果與討論 第五章 結論 參考資料

    第二章:
    [1] M. N. Baibich et al, “Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices” Phy. Rev. Lett. 61 (1988) p2472.
    [2] B. Dieny et al, “Magnetotransport properties of magnetically soft spin-valve
    structures (invited)”J. Appl. Phys. 69 (1991) p4774.
    [3] W. F. Egelhoff et al, “Magnetoresistance values exceeding 21% in symmetric
    spin valves” J. Appl. Phys. 78 (1995) p273.
    [4] H.J.M. Swagten et al, “Specular reflection in spin valves bounded by NiO layers “ IEEE Trans. Magn. 34 (1998) p948
    [5] Y. Kamiguchi et al, IEEE conference, DB01 (1999)
    [6] S. H. Jang et al, “Effect of the nano-oxide layer as a Mn diffusion barrier in specular spin valves” Appl. Phys. Lett. 81(2002) p105
    [7] Hideaki Fukuzawa et al,” NOL specular spin-valve heads using an ultrathin
    CoFe free layer” J. Magn. Magn. Mater. 235 (2001) p208
    [8] Jongill Hong et al, “Design of specularly reflective layers in spin valves” J. Appl. Phys. 94 (2003) p3288
    [9] Jongill Hong et al, “Very large giant magnetoresistance of spin valves with specularly reflective oxide layers” Appl. Phys. Lett. 83 (2003) p960
    [10] Yuasa H et al, J. Magn. Magn. Mater. 267 (2003) p53
    [11] L. Wang et al, “Interface or bulk scattering in the semiclassical theory for spin valves“ Phy. Rev. B 69 (2004) p214403
    [12] Ming Mao et al, “Physical properties of spin-valve films grown on naturally oxidized metal nano-oxide surfaces” J. Appl. Phys. 91 (2002) p8560
    [13] F. Shen et al, “A specular spin valve with discontinuous nano-oxide layers” Appl. Phys. Lett. 80(2002)
    [14] C. H. Lai et al, “Biquadratic coupling through nano-oxide layers in pinned layers of IrMn-based spin valves” J. Appl. Phys. 93 (2003) p8412
    [15] Hideaki Fukuzawa et al, “Specular spin-valve films with an FeCo nano-oxide layerby ion-assisted oxidation” J. Appl. Phys. 91 (2002) p6684
    [16] J. O. Ventura et al, “Anomalous magnetoresistance behavior of CoFe nano-oxide spin valves at low temperatures” J. Appl. Phys. 93 (2003) 7690
    [17] J.O. Ventura et al,” Impact of the magnetism of nano-oxide layers on the GMR effect in specular spin valves” J. Magn. Magn. Mater. 272 (2004) p1892
    [18] Masaaki Doi et al, “Magnetism of Co1-xFex-NOL in Specular Spin-Valves” IEEE Trans. Magn. 40 (2004) p2263
    [19] S. Maat et al, “90° coupling induced by exchange biasing in PtMn/CoFe10 /CoFe2O4 /CoFe10 films“ J. Appl. Phys. 93 (2003) p7229
    [20] W. H. Meiklejohn et al, Phys. Rev. 102 (1956) p1413; Phys. Rev., 105 (1957) p904.
    [21] A. P. Malozemoff, “Random-field model of exchange anisotropy at rough ferromagnetic-antiferromagnetic interfaces” Phys. Rev. B., 35 (1987) p3679.
    [22] D. Mauri et al, J. Appl. Phys. 62 (1987) p3047.
    [23] N. C. Koon, “Calculations of Exchange Bias in Thin Films with Ferromagneticy Antiferromagnetic Interfaces” Phy. Rev. Lett. 78 (1997) p4865
    [24] T. C. Schulthess et al, “Consequences of Spin-Flop Coupling in Exchange Biased Films” Phy. Rev. Lett. 81 (1998) p4516
    [25] J.C. Slonczewski, “Overview of interlayer exchange theory” J. Magn. Magn. Mater. 150 (1995) p13
    [26] Haiwen Xi et al, “Coupling between two ferromagnetic layers separated by an antiferromagnetic layer” Phys. Rev. B. 62 (2000) p3933
    [27] V. Chakarian et al, “Canted coupling of buried magnetic multilayers” Phys. Rev. B. 53 (1996) p11313
    [28] P. A. A. van der Heijden et al, “Evidence for Roughness Driven 90± Coupling in Fe3O4/NiO/Fe3O4 Trilayers“ Phy. Rev. Lett. 82 (1999) p1020
    [29] J. Camarero et al, “Perpendicular Interlayer Coupling in Ni80Fe20/NiO/Co Trilayers“ Phy. Rev. Lett. 91 (2003) p027201
    [30] F.Y. Yang et al, ” Spiraling Spin Structure in an Exchange-Coupled Antiferromagnetic Layer” Phy. Rev. Lett. 85 (2000) p2597

    第四章:
    [a] Schuller et al, “Tailoring exchange bias with magnetic nanostructures” Phy. Rev. B 63 (2003) p060403
    [b] J.McCord et al, “Kerr observations of asymmetric magnetization reversal processes in CoFe/IrMn bilayer systems” J. Appl. Phys. 93 (2003) p5491
    [c] J. Camarero et al, “Perpendicular Interlayer Coupling in Ni80Fe20/NiO/Co Trilayers“ Phy. Rev. Lett. 91 (2003) p027201
    [d] P. A. A. van der Heijden et al, “Evidence for Roughness Driven 90± Coupling in Fe3O4/NiO/Fe3O4 Trilayers“ Phy. Rev. Lett. 82 (1999) p1020
    [e] S. Maat et al, “90° coupling induced by exchange biasing in PtMn/CoFe10 /CoFe2O4 /CoFe10 films“ J. Appl. Phys. 93 (2003) p7229
    [f] Schuller et al, “Exchange Bias and Asymmetric Reversal in Nanostructured Dot Arrays“ Phy. Rev. Lett. 94 (2005) p057203
    [g] C.L. Chen 2004 MMM conference

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE