研究生: |
王文怡 Wang, Wen-I |
---|---|
論文名稱: |
單核到多核之鐿金屬錯合物與雙核鑭系金屬串之合成與鑑定 Design Mononuclear and Polynuclear Ytterbium Complexes and Binuclear Lanthanide Metal String Complexes |
指導教授: |
黃郁文
Huang, Yu-Wen |
口試委員: |
彭之皓
Peng, Chi-How 劉學儒 Liu, Hsueh-Ju |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2023 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 91 |
中文關鍵詞: | 鑭系金屬 、鐿金屬錯核物 、異合金屬錯核物 、同合金屬錯核物 |
外文關鍵詞: | Lanthanides, hetero-bimetallic complexes, homonuclear lanthanide complexes, ytterbium complex |
相關次數: | 點閱:51 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
透過鑭系雙(三甲基矽基)胺 (Tris[N, N-bis-(trimethylsilyl)amide] Lanthanide, Ln(HMDS)3, Ln= Pr3+, Eu3+, Gd3+, Yb3+) 與含有三個氧原子的二(2-羥基-3, 5-二叔丁基苯基)甲酮 (bis(2-Hydroxy-3,5-di-t-butylphenyl) methanone, H2DHBP-tBu)反應後得到雙核的鑭系錯合物形成Ln2(DHBP-tBu)3 (Ln= Pr3+, Eu3+, Gd3+, Yb3+)。在合成Yb(HMDS)3 時,通過純化方式的改變,進一步與配基反應時能夠得到單核的Yb(DHBP-tBu)3Na3(THF)3金屬錯合物。並且對這一系列的錯合物進行性質鑑定,包含質譜、紅外光譜、紫外-可見光吸收光譜、放光光譜,與晶體結構進行比較。在單核與雙核鐿錯合物的放光光譜中,在近紅外光波段可觀察到尖銳且明顯地Yb(III) f-f 軌域躍遷中2F5/2→2F7/2的特徵峰,其絕對量子產率分別為1.54%與1.69%。以Yb(DHBP-tBu)3Na3(THF)3為基底,進一步與同金屬和異金屬鹽類反應,分別能夠得到同核錯合物Yb2(DHBP-tBu)3與異核錯合物GdYb (DHBP-tBu)3。此外也使用將三氧配基延伸後含有五個氧的配基(5-(叔丁基)-2-羥基-1,3-苯基)雙((3, 5-二叔丁基-2-羥基苯基)甲酮) (5-(tert-butyl)-2-hydroxy-1,3-phenylene)bis((3,5-di-tert-butyl-2-hydroxyphenyl)methanone), H3THBP-tBu)與Yb(HMDS)3反應得到三核錯合物,並探討其結構。
Lanthanide complexes have attracted much attention recently and have shown great potential applications in coordination polymer and magnetic functional material owing to their various coordination number, magnetic and photophysical properties. Herein, binuclear lanthanide complexes [Ln2(DHBP-tBu)3] (H2DHBP-tBu = Bis[bis(2-Hydroxy-3,5-di-t-butylphenyl)methanone ; Ln = Pr3+, Eu3+, Gd3+, Yb3+) and one alkali metal lanthanide complex [Ln(DHBP-tBu)3M3(THF)3] (M = Na+; Ln = Yb3+) were obtained by using Ln(HMDS)3 and Na(HMDS) as starting materials.
These lanthanide complexes were fully characterized through single-crystal X-ray diffraction associated with the mass spectrum and elemental analysis. Their photophysical properties were investigated by using UV-Vis spectroscopy and photoluminescence spectroscopy, while their magnetic properties were studied by the superconducting quantum interference device (SQUID).
[Yb2(DHBP-tBu)3] and [Yb(DHBP-tBu)3Na3(THF)3] showed emission peaks at 984 and 979 nm, respectively, which were assigned to the characteristic 2F5/2 → 2F7/2 transition of Yb3+. Their absolute quantum yield were 1.54% and 1.69% in solid state.
The [Ln2(DHBP-tBu)3] complexes crystallize in the trigonal system with space group R"3" ̂c. The geometry around the each Ln3+ metal center shows a slightly distorted.
trigonal prism with short Ln···Ln distances 3.7291 Å for Pr3+, 3.6199(3) Å for Eu3+, 3.599(4) Å for Gd3+ and 3.4638(2) Å for Yb3+ binuclear lanthanide complexes.
1. Cotton, F. A.; Curtis, N. F.; Harris, C. B.; Johnson, B. F.; Lippard, S. J.; Mague, J. T.; Robinson, W. R.; Wood, J. S., Mononuclear and Polynuclear Chemistry of Rhenium(III): Its Pronounced Homophilicity. Science 1964, 145 (3638), 1305-1307.
2. Nguyen, T.; Sutton, A. D.; Brynda, M.; Fettinger, J. C.; Long, G. J.; Power, P. P., Synthesis of a stable compound with fivefold bonding between two chromium(I) centers. Science 2005, 310 (5749), 844-847.
3. Gould, C. A.; McClain, K. R.; Reta, D.; Kragskow, J. G. C.; Marchiori, D. A.; Lachman, E.; Choi, E. S.; Analytis, J. G.; Britt, R. D.; Chilton, N. F.; Harvey, B. G.; Long, J. R., Ultrahard magnetism from mixed-valence dilanthanide complexes with metal-metal bonding. Science 2022, 375 (6577), 198-202.
4. Chen, W.; Jiang, C.; Zhang, J.; Xu, J.; Xu, L.; Xu, X.; Li, J.; Cui, C., Rare-Earth-Catalyzed Selective 1,4-Hydrosilylation of Branched 1,3-Enynes Giving Tetrasubstituted Silylallenes. J Am Chem Soc 2021, 143 (33), 12913-12918.
5. La Cava, F.; Fringuello Mingo, A.; Miragoli, L.; Terreno, E.; Cappelletti, E.; Lattuada, L.; Poggi, L.; Colombo Serra, S., Synthesis, Characterization, and Biodistribution of a Dinuclear Gadolinium Complex with Improved Properties as a Blood Pool MRI Agent. ChemMedChem 2018, 13 (8), 824-834.
6. Harrison, V. S.; Carney, C. E.; MacRenaris, K. W.; Waters, E. A.; Meade, T. J., Multimeric Near IR-MR Contrast Agent for Multimodal In Vivo Imaging. J. Am. Chem. Soc. 2015, 137 (28), 9108-9116.
7. Yan, R.; Hu, Y.; Liu, F.; Wei, S.; Fang, D.; Shuhendler, A. J.; Liu, H.; Chen, H. Y.; Ye, D., Activatable NIR Fluorescence/MRI Bimodal Probes for in Vivo Imaging by Enzyme-Mediated Fluorogenic Reaction and Self-Assembly. J. Am. Chem. Soc. 2019, 141 (26), 10331-10341.
8. Gould, C. A.; McClain, K. R.; Yu, J. M.; Groshens, T. J.; Furche, F.; Harvey, B. G.; Long, J. R., Synthesis and Magnetism of Neutral, Linear Metallocene Complexes of Terbium(II) and Dysprosium(II). J Am Chem Soc 2019, 141 (33), 12967-12973.
9. Khullar, S.; Singh, S.; Das, P.; Mandal, S. K., Luminescent Lanthanide-Based Probes for the Detection of Nitroaromatic Compounds in Water. ACS Omega 2019, 4 (3), 5283-5292.
10. Cho, U.; Chen, J. K., Lanthanide-Based Optical Probes of Biological Systems. Cell Chem Biol 2020, 27 (8), 921-936.
11. Heffern, M. C.; Matosziuk, L. M.; Meade, T. J., Lanthanide probes for bioresponsive imaging. Chem. Rev. 2014, 114 (8), 4496-539.
12. Bodman, S. E.; Butler, S. J., Advances in anion binding and sensing using luminescent lanthanide complexes. Chem. Sci. 2021, 12 (8), 2716-2734.
13. Nielsen, L. G.; Sorensen, T. J., Effect of buffers and pH in antenna sensitized Eu(III) luminescence. Methods Appl. Fluoresc. 2023, 11 (1), 1-11.
14. Weinmann, H. J.; Brasch, R. C.; Press, W. R.; Wesbey, G. E., Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent. AJR Am. J. Roentgenol. 1984, 142 (3), 619-24.
15. Hao, D.; Ai, T.; Goerner, F.; Hu, X.; Runge, V. M.; Tweedle, M., MRI contrast agents: basic chemistry and safety. J. Magn. Reson. Imaging 2012, 36 (5), 1060-1071.
16. Cao, Y.; Xu, L.; Kuang, Y.; Xiong, D.; Pei, R., Gadolinium-based nanoscale MRI contrast agents for tumor imaging. J. Mater. Chem. B. 2017, 5 (19), 3431-3461.
17. Sessoli, R.; Tsai, H. L.; Schake, A. R.; Wang, S.; Vincent, J. B.; Folting, K.; Gatteschi, D.; Christou, G.; Hendrickson, D. N., High-spin molecules: [Mn12O12(O2CR)16(H2O)4]. J. Am. Chem. Soc. 2002, 115 (5), 1804-1816.
18. Escalera-Moreno, L.; Baldovi, J. J.; Gaita-Arino, A.; Coronado, E., Spin states, vibrations and spin relaxation in molecular nanomagnets and spin qubits: a critical perspective. Chem. Sci. 2018, 9 (13), 3265-3275.
19. Ishikawa, N.; Sugita, M.; Okubo, T.; Tanaka, N.; Iino, T.; Kaizu, Y., Determination of ligand-field parameters and f-electronic structures of double-decker bis(phthalocyaninato)lanthanide complexes. Inorg. Chem. 2003, 42 (7), 2440-2446.
20. Ishikawa, N.; Sugita, M.; Ishikawa, T.; Koshihara, S. Y.; Kaizu, Y., Lanthanide double-decker complexes functioning as magnets at the single-molecular level. J. Am. Chem. Soc. 2003, 125 (29), 8694-8695.
21. Scott, R. A., Encyclopedia of Inorganic and Bioinorganic Chemistry. 2012; p 2-4.
22. Parker, D.; Suturina, E. A.; Kuprov, I.; Chilton, N. F., How the Ligand Field in Lanthanide Coordination Complexes Determines Magnetic Susceptibility Anisotropy, Paramagnetic NMR Shift, and Relaxation Behavior. Acc. Chem. Res. 2020, 53 (8), 1520-1534.
23. Zhang, J.; Zhang, H.; Chen, Y.; Zhang, X.; Li, Y.; Liu, W.; Dong, Y., A series of dinuclear lanthanide complexes with slow magnetic relaxation for Dy2 and Ho2. J. Chem. Soc., Dalton trans. 2016, 45 (41), 16463-16470.
24. Aguila, D.; Barrios, L. A.; Velasco, V.; Roubeau, O.; Repolles, A.; Alonso, P. J.; Sese, J.; Teat, S. J.; Luis, F.; Aromi, G., Heterodimetallic [LnLn'] lanthanide complexes: toward a chemical design of two-qubit molecular spin quantum gates. J. Am. Chem. Soc. 2014, 136 (40), 14215-14222.
25. Buch, C. D.; Hansen, S. H.; Mitcov, D.; Tram, C. M.; Nichol, G. S.; Brechin, E. K.; Piligkos, S., Design of pure heterodinuclear lanthanoid cryptate complexes. Chem. Sci. 2021, 12 (20), 6983-6991.
26. Zhao, J. Y.; Ren, N.; Zhang, Y. Y.; Tang, K.; Zhang, J. J., Five Dinuclear Lanthanide Complexes Based on 2,4-dimethylbenzoic Acid and 5,5'-dimethy-2,2'-bipyridine: Crystal Structures, Thermal Behaviour and Luminescent Property. Front. Chem. 2021, 9, 726813.
27. Sharma, V.; Simard, M.; Wuest, J. D., Simultaneous Coordination of a Ketone by 2 Main-Group Lewis-Acids. J Am Chem Soc 1992, 114 (20), 7931-7933.
28. Chen, C.; Bai, Z.; Cui, Y.; Cong, Y.; Pan, X.; Wu, J., ppm-Level Thermally Switchable Yttrium Phenoxide Catalysts for Moisture-Insensitive and Controllably Immortal Polymerization of rac-Lactide. Macromolecules 2018, 51 (17), 6800-6809.
29. Lin, X. J.; Huang, S. P.; Huang, M. J.; Wang, C. L.; Peng, C. H.; Liu, H. J.; Wu, Y. K., Revisiting the synthesis of bis(2‐hydroxy‐3,5‐di‐t-butylphenyl)methanone. J Chin Chem Soc. 2022, 69 (10), 1803-1809.
30. Bradley, D. C.; Ghotra, J. S.; Hart, F. A., Low co-ordination numbers in lanthanide and actinide compounds. Part I. The preparation and characterization of tris{bis(trimethylsilyl)-amido}lanthanides. J. Chem. Soc., Dalton Trans. 1973, (10).
31. Clayden, J.; Greeves, N.; Warren, S., Organic chemistry. Oxford University Press, USA: 2012.
32. Klein, A.; Neugebauer, M.; Krest, A.; Lüning, A.; Garbe, S.; Arefyeva, N.; Schlörer, N., Five Coordinate Platinum(II) in [Pt(bpy)(cod)(Me)][SbF6]: A Structural and Spectroscopic Study. Inorganics 2015, 3 (2), 118-138.
33. Sun, Q.; Yan, P.; Niu, W.; Chu, W.; Yao, X.; An, G.; Li, G., NIR luminescence of a series of benzoyltrifluoroacetone erbium complexes. RSC Adv. 2015, 5 (81), 65856-65861.
34. Dasari, S.; Maparu, A. K.; Abbas, Z.; Kumar, P.; Birla, H.; Sivakumar, S.; Patra, A. K., Bimetallic Europium and Terbium Complexes Containing Substituted Terpyridines and the NSAID Drug Tolfenamic Acid: Structural Differences, Luminescence Properties, and Theranostic Applications. Eur. J. Inorg. Chem. 2020, 2020 (31), 2998-3009.
35. Salem, A. A., Fluorimetric determinations of nucleic acids using iron, osmium and samarium complexes of 4,7-diphenyl-1,10-phenanthroline. Spectrochim. Acta A Mol. 2006, 65 (1), 235-248.
36. Sienkiewicz-Gromiuk, J.; Rusinek, I.; Kurach, Ł.; Rzączyńska, Z., Thermal and spectroscopic (IR, XPS) properties of lanthanide(III) benzene-1,3,5-triacetate complexes. J. Therm. Anal. Calorim. 2016, 126 (1), 327-342.
37. Jin, Q.; Fujishima, M.; Iwaszuk, A.; Nolan, M.; Tada, H., Loading Effect in Copper(II) Oxide Cluster-Surface-Modified Titanium(IV) Oxide on Visible- and UV-Light Activities. J. Phys. Chem. C 2013, 117 (45), 23848-23857.
38. Zhao, L.-H.; Chen, H.-M.; Yang, A.-H.; Wu, D.-F.; Gou, J.; Cui, J.-Z.; Gao, H.-L., Synthesis, characterization and properties of lanthanide complexes with different ancillary ligands. Inorganica Chim. Acta 2019, 490, 240-245.
39. Brito-Santos, G.; Gil-Hernandez, B.; Hernandez-Rodriguez, C.; Gonzalez-Diaz, B.; Guerrero-Lemus, R.; Sanchiz, J., Degradation analysis of highly UV-resistant down-shifting layers for silicon-based PV module applications. Mater. Sci. Eng. B: Solid-State Mater. 2023, 288.
40. Kaszowska, Z.; Malek, K.; Staniszewska-Slezak, E.; Niedzielska, K., Raman scattering or fluorescence emission? Raman spectroscopy study on lime-based building and conservation materials. Spectrochim Acta A Mol Biomol Spectrosc 2016, 169, 7-15.
41. Oylumluoglu, G., Crystal Structure and Luminescence Properties of a New Two-Dimensional Gd(III) Complex. J. Clust. Sci. 2018, 29 (4), 649-654.
42. Easter, D. C.; Baronavski, A. P., Ultrafast relaxation in the fluorescent state of the laser dye DCM. Chem. Phys. Lett. 1993, 201 (1-4), 153-158.
43. Brandner, B., Implementation of a comparative method for measuring photoluminescence quantum yield of novel compounds in solution. 2016.
44. Ren, G.; Zhang, D.; Wang, H.; Li, X.; Deng, R.; Zhou, S.; Tian, L.; Zhou, L., A Novel Near-Infrared Ytterbium Complex [Yb(DPPDA)2](DIPEA) with Phi = 0.46% and τ(obs) = 105 us. Molecules 2023, 28 (4).
45. Chong, B. S. K.; Rajah, D.; Allen, M. F.; Galan, L. A.; Massi, M.; Ogden, M.; Moore, E. G., Enhanced Near-Infrared Emission from Eight-Coordinate vs Nine-Coordinate Yb(III) Complexes Using 2-(5-Methylpyridin-2-yl)-8-hydroxyquinoline. Inorg. Chem. 2020, 59 (22), 16194-16204.
46. Trivedi, E. R.; Eliseeva, S. V.; Jankolovits, J.; Olmstead, M. M.; Petoud, S.; Pecoraro, V. L., Highly emitting near-infrared lanthanide "encapsulated sandwich" metallacrown complexes with excitation shifted toward lower energy. J. Am. Chem. Soc. 2014, 136 (4), 1526-34.
47. Doffek, C.; Alzakhem, N.; Molon, M.; Seitz, M., Rigid, perdeuterated lanthanoid cryptates: extraordinarily bright near-IR luminophores. Inorg. Chem. 2012, 51 (8), 4539-45.
48. Asano-Someda, M.; Kaizu, Y., Hot bands of (f, f∗) emission from ytterbium(III) porphyrins in solution. J. Photochem. Photobiol. A J PHOTOCH PHOTOBIO A 2001, 139 (2-3), 161-165.
49. Chong, B. S. K.; Moore, E. G., Quantitative Sensitization Efficiencies in NIR-Emissive Homoleptic Ln(III) Complexes Using 2-(5-Methylpyridin-2-yl)-8-hydroxyquinoline. Inorg. Chem. 2018, 57 (22), 14062-14072.
50. Beeby, A.; Dickins, R. S.; Faulkner, S.; Parker, D.; Gareth Williams, J. A., Luminescence from ytterbium(iii) and its complexes in solution. ChemComm. 1997, (15), 1401-1402.
51. Hu, J. Y.; Ning, Y.; Meng, Y. S.; Zhang, J.; Wu, Z. Y.; Gao, S.; Zhang, J. L., Highly near-IR Emissive Ytterbium(iii) Complexes with Unprecedented Quantum Yields. Chem. Sci. 2017, 8 (4), 2702-2709.
52. Bain, G. A.; Berry, J. F., Diamagnetic Corrections and Pascal's Constants. J. Chem. Educ. 2008, 85 (4), 532-536.
53. Ye, J.; Wang, Q.; Gao, H.; Lu, X.; Gong, W.; Lin, Y.; Ning, G., Effect of auxiliary-ligand on assembly of lanthanide(III) complexes with quinoline-2-carboxylic acid: Synthesis, structure, photoluminescent and magnetic properties. Inorganica Chim. Acta 2012, 384, 1-7.
54. Ullmann, S.; Hahn, P.; Blomer, L.; Mehnert, A.; Laube, C.; Abel, B.; Kersting, B., Dinuclear lanthanide complexes supported by a hybrid salicylaldiminato/calix[4]arene ligand: synthesis, structure, and magnetic and luminescence properties of (HNEt3)[Ln2(HL)(L)] (Ln = Sm(III), Eu(III), Gd(III), Tb(III)). J. Chem. Soc., Dalton trans. 2019, 48 (12), 3893-3905.
55. Polyzou, C. D.; Nikolaou, H.; Raptopoulou, C. P.; Konidaris, K. F.; Bekiari, V.; Psycharis, V.; Perlepes, S. P., Dinuclear Lanthanide(III) Complexes from the Use of Methyl 2-Pyridyl Ketoxime: Synthetic, Structural, and Physical Studies. Molecules 2021, 26 (6), 1622.
56. Liu, T. Q.; Yan, P. F.; Luan, F.; Li, Y. X.; Sun, J. W.; Chen, C.; Yang, F.; Chen, H.; Zou, X. Y.; Li, G. M., Near-IR luminescence and field-induced single molecule magnet of four salen-type ytterbium complexes. Inorg. Chem. 2015, 54 (1), 221-228.
57. Li, Y.; Chen, X.; Gong, Y., Synthesis of a dinuclear europium(iii) complex through deprotonation and oxygen-atom transfer of trimethylamine N-oxide. J. Chem. Soc., Dalton trans. 2019, 48 (46), 17158-17162.
58. Van Vleck, J. H.; Frank, A., The Effect of Second Order Zeeman Terms on Magnetic Susceptibilities in the Rare Earth and Iron Groups. Phys. Rev. 1929, 34 (11), 1494-1496.
59. Gao, F.; Zhang, Y. Q.; Sun, W.; Liu, H.; Chen, X., Syntheses, structures and magnetic properties of macrocyclic Schiff base-supported homodinuclear lanthanide complexes. J. Chem. Soc., Dalton trans. 2018, 47 (33), 11696-11704.
60. Gao, F.; Wang, L.; Zhu, G. Z.; Liu, Y. H.; Yang, H.; Li, X.; Yang, K., Controllable syntheses and magnetic properties of novel homoleptic triple-decker lanthanide complexes. J. Chem. Soc., Dalton trans. 2019, 48 (35), 13360-13368.
61. Nematirad, M.; Gee, W. J.; Langley, S. K.; Chilton, N. F.; Moubaraki, B.; Murray, K. S.; Batten, S. R., Single molecule magnetism in a mu-phenolato dinuclear lanthanide motif ligated by heptadentate Schiff base ligands. J. Chem. Soc., Dalton trans. 2012, 41 (44), 13711-5.
62. Canadillas-Delgado, L.; Fabelo, O.; Pasan, J.; Delgado, F. S.; Lloret, F.; Julve, M.; Ruiz-Perez, C., Intramolecular ferro- and antiferromagnetic interactions in oxo-carboxylate bridged digadolinium(III) complexes. J. Chem. Soc., Dalton trans. 2010, 39 (31), 7286-93.