簡易檢索 / 詳目顯示

研究生: 吳偉碩
Wu, Wei-Shuo
論文名稱: 人類嗜酸性白血球陽離子蛋白之肝素結合區位的功能特性探討
Functional Characterization of Heparin Binding Regions in Human Eosinophil Cationic Protein
指導教授: 黎耀基
Lai, Yiu-Kay
張大慈
Chang, Margaret Dah-Tsyr
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 74
中文關鍵詞: 嗜酸性白血球陽離子蛋白肝素結合區位
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    嗜酸性白血球陽離子蛋白(eosinophil cationic protein; ECP)是由活化的人類嗜酸性白血球分泌的蛋白質,屬於人類核醣核酸水解酶A家族,亦稱為核醣核酸水解酶三。ECP能與細胞表面的氨基葡聚醣,特別是硫酸乙醯肝素醣蛋白結合,並透過胞飲作用進入支氣管上皮細胞造成細胞死亡,最後引起呼吸道發炎而導致氣喘等疾病的發生。哺乳動物細胞表面的肝素/硫酸乙醯肝素會和肝素結合蛋白序列中帶正電的胺基酸結合,在先前的研究中,本實驗室利用生物資訊及點突變法找出在ECP序列中可能與肝素結合有關的胺基酸序列。為了更進一步探討預測之ECP肝素結合區位(heparin binding region, HBR)的功能,本研究建立包含三個可能肝素結合區域的七種ECP突變株。利用螢光標定醣電泳 (FACE) 及細胞表面酵素連結免疫吸附分析 (ELISA) 分別測定ECP與其突變株對肝素及支氣管上皮細胞的結合能力。本研究發現HBR2(75RSRFR79)與HBR3(101RPGRR105)是影響ECP與人類支氣管上皮細胞 (Beas-2B) 結合的主要二個區位,而HBR1(34RWRCK38)則在ECP進入細胞的過程中扮演重要的角色。此外在ECP突變株對Beas-2B之毒性試驗中,發現HBR3(101RPGRR105)是ECP造成細胞死亡的關鍵區域。本論文之具體貢獻為發現並報導ECP序列中肝素結合區位的功能特徵之嶄新視野。


    Abstract
    Eosinophil cationic protein (ECP) is secreted by activated granular eosinophilic leukocytes. It belongs to human ribonuclease (RNase) A superfamily and is also named as RNase 3. Endocytosis of ECP into Beas-2B, human bronchial epithelial cells, depends on the interaction between protein and cell surface glycosaminoglycan (GAGs), especially heparin sulfate proteoglycans (HSPGs), and this process results in cell death which in turn leads to airway inflammatory disease such as asthma. In general, heparin/ heparan sulfate on the surface of mammalian cells has been reported to interact with positively charged residues in heparin binding proteins. In previous studies, three putative heparin binding regions (HBRs) (34RWRCK38, 75RSRFR79, and 101RPGRR105) of ECP were identified by bioinformatics methods and point mutation analysis. To further examine functional characteristics of these HBRs on ECP, seven mutant ECPs with different HBRs were constructed in this study. The binding ability of each mutant ECP to LMWH and Beas-2B cell surface was evaluated by fluorescence-assisted carbohydrate electrophoresis (FACE) and cell based enzyme-link immunosorbent assay (ELISA), respectively. The results show that HBR2 (75RSRFR79) and HBR3 (101RPGRR105) are involved in cellular binding ability of ECP, whereas HBR1 (34RWRCK38) plays a crucial role on cell penetration ability of ECP based on ECP uptake assay. Furthermore, cell viability assay indicates that HBR3 (101RPGRR105) acts as the key component contributing the cytotoxicity of ECP towards Beas-2B cells. The present study provides a novel insight in functional characteristics of three HBRs of ECP.

    Table of Contents 中文摘要 I Abstract II Table of Contents IV List of Table VII List of Figures VIII List of Appendix IX Abbreviations X Chapter 1 Introduction 1 1-1 Eosinophil and asthma 1 1-2 ECP and EDN 2 1-3 ECP and Glycosaminoglycans 2 1-4 Cytotoxicity of ECP 4 1-5 RNase characteristics of ECP 5 1-6 Purpose of this study 6 Chapter 2 Materials and Methods 8 2-1 Microbial strain and plasmid 8 2-2 Cell line strain and cell culture 9 2-3 Construction of mutant ECP 9 2-4 in situ PCR 10 2-5 Competent cell preparation and transformation of E. coli 11 2-6 Mini-preparation of plasmid 12 2-7 Site-directed mutagenesis and DNA sequencing 13 2-8 Culture condition of E. coli 15 2-9 Expression and purification of recombinant ECP and mtECP 15 2-10 Determination of protein concentration 17 2-11 Fluorescence-assisted carbohydrate electrophoresis (FACE) 17 2-12 Cell enzyme-link immunosorbent assay (ELISA) 18 2-13 ECP uptake assays and Western blotting 20 2-14 Cell viability assay 20 2-15 RNase activity assay 21 Chapter 3 Results 22 3-1 Expression and purification of wild type and mutant ECP 22 3-2 Binding ability of wild type and mutant ECP to LMWH 23 3-3 Binding ability of wild type and mutant ECP to Beas-2B cells 25 3-4 Penetration ability of wild type and mutant ECP to Beas-2B cells 26 3-5 Cytotoxicity of wild type and mutant ECP to Beas-2B cells 27 3-6 RNase activity of wild type and mutant ECP 28 Chapter 4 Discussion 29 4-1 Three putative heparin binding regions were important for heparin binding 29 4-2 HBR2 and HBR3 played a critical role in ECP binding to Beas-2B cells 30 4-3 HBR1 of ECP played a critical role in cell penetration to Beas-2B cells 31 4-4 HBR3 contributed to the cytotoxicity of ECP 32 4-5 HBR1-mtECP lost RNase activity 33 4-6 Comparison of HBR functions in ECP and EDN 34 4-7 Comparison of ECP-6H and MBP-ECP 35 4-8 Conclusion 35 References 37

    References

    1. Mcewen, B.J., Eosinophils - a Review. Veterinary Research Communications, 1992. 16(1): p. 11-44.
    2. Rothenberg, M.E. and S.P. Hogan, The eosinophil. Annu Rev Immunol, 2006. 24: p. 147-74.
    3. Trivedi, S.G. and C.M. Lloyd, Eosinophils in the pathogenesis of allergic airways disease. Cell Mol Life Sci, 2007. 64(10): p. 1269-89.
    4. Giembycz, M.A. and M.A. Lindsay, Pharmacology of the eosinophil. Pharmacological Reviews, 1999. 51(2): p. 213-339.
    5. Guilpain, P., L. Guillevin, and L. Mouthon, [Eosinophil granule cationic proteins: eosinophil activation markers]. Rev Med Interne, 2006. 27(5): p. 406-8.
    6. Venge, P., et al., Eosinophil cationic protein (ECP): molecular and biological properties and the use of ECP as a marker of eosinophil activation in disease. Clin Exp Allergy, 1999. 29(9): p. 1172-86.
    7. Venge, P., Monitoring the allergic inflammation. Allergy, 2004. 59(1): p. 26-32.
    8. Koller, D.Y., Sampling methods: urine/blood analysis. Am J Respir Crit Care Med, 2000. 162(2 Pt 2): p. S31-3.
    9. Badar, A., et al., Correlation of eosinophil cationic protein with severity of asthma. J Ayub Med Coll Abbottabad, 2004. 16(3): p. 66-71.
    10. Solarewicz-Madejek, K., et al., T cells and eosinophils in bronchial smooth muscle cell death in asthma. Clin Exp Allergy, 2009. 39(6): p. 845-55.
    11. Koh, G.C., et al., Eosinophil cationic protein: is it useful in asthma? A systematic review. Respir Med, 2007. 101(4): p. 696-705.
    12. Woschnagg, C., J. Rubin, and P. Venge, Eosinophil Cationic Protein (ECP) Is Processed during Secretion. Journal of Immunology, 2009. 183(6): p. 3949-3954.
    13. Durack, D.T., et al., Purification of human eosinophil-derived neurotoxin. Proc Natl Acad Sci U S A, 1981. 78(8): p. 5165-9.
    14. Rosenberg, H.F., D.G. Tenen, and S.J. Ackerman, Molecular cloning of the human eosinophil-derived neurotoxin: a member of the ribonuclease gene family. Proc Natl Acad Sci U S A, 1989. 86(12): p. 4460-4.
    15. Rosenberg, H.F., The eosinophil ribonucleases. Cellular and Molecular Life Sciences, 1998. 54(8): p. 795-803.
    16. Slifman, N.R., et al., Ribonuclease activity associated with human eosinophil-derived neurotoxin and eosinophil cationic protein. Journal of Immunology, 1986. 137(9): p. 2913-7.
    17. Carreras, E., et al., Surface-exposed amino acids of eosinophil cationic protein play a critical role in the inhibition of mammalian cell proliferation. Mol Cell Biochem, 2005. 272(1-2): p. 1-7.
    18. Fan, T.C., et al., A heparan sulfate-facilitated and raft-dependent macropinocytosis of eosinophil cationic protein. Traffic, 2007. 8(12): p. 1778-95.
    19. Mulloy, B. and R.J. Linhardt, Order out of complexity - protein structures that interact with heparin. Current Opinion in Structural Biology, 2001. 11(5): p. 623-628.
    20. Gandhi, N.S. and R.L. Mancera, The Structure of Glycosaminoglycans and their Interactions with Proteins. Chemical Biology & Drug Design, 2008. 72(6): p. 455-482.
    21. Asundi, V.K., et al., Developmental and cell-type-specific expression of cell surface heparan sulfate proteoglycans in the rat heart. Exp Cell Res, 1997. 230(1): p. 145-53.
    22. David, G., Heparan sulphate proteoglycans of human fibroblasts. Biochem Soc Trans, 1990. 18(5): p. 805-7.
    23. Karthikeyan, L., et al., Cloning of a Major Heparan-Sulfate Proteoglycan from Brain and Identification as the Rat Form of Glypican. Biochemical and Biophysical Research Communications, 1992. 188(1): p. 395-401.
    24. Hileman, R.E., et al., Glycosaminoglycan-protein interactions: definition of consensus sites in glycosaminoglycan binding proteins. Bioessays, 1998. 20(2): p. 156-167.
    25. Capila, I. and R.J. Linhardt, Heparin-protein interactions. Angew Chem Int Ed Engl, 2002. 41(3): p. 391-412.
    26. Cardin, A.D. and H.J. Weintraub, Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis, 1989. 9(1): p. 21-32.
    27. Fan, T.C., et al., Characterization of molecular interactions between eosinophil cationic protein and heparin. Journal of Biological Chemistry, 2008. 283(37): p. 25468-25474.
    28. Driss, V., et al., TLR2-dependent eosinophil interactions with mycobacteria: role of alpha-defensins. Blood, 2009. 113(14): p. 3235-44.
    29. Lehrer, R.I., et al., Antibacterial properties of eosinophil major basic protein and eosinophil cationic protein. J Immunol, 1989. 142(12): p. 4428-34.
    30. Torrent, G., et al., Bactericidal activity engineered on human pancreatic ribonuclease and onconase. Mol Pharm, 2009.
    31. Torrent, M., et al., Bactericidal and membrane disruption activities of the eosinophil cationic protein are largely retained in an N-terminal fragment. Biochemical Journal, 2009. 421: p. 425-434.
    32. Hamann, K.J., et al., In vitro killing of microfilariae of Brugia pahangi and Brugia malayi by eosinophil granule proteins. J Immunol, 1990. 144(8): p. 3166-73.
    33. Choi, J., et al., The role of TNF-alpha in eosinophilic inflammation associated with RSV bronchiolitis. Pediatr Allergy Immunol, 2010.
    34. Domachowske, J.B., et al., Eosinophil cationic protein RNase 3 is another RNaseA-family ribonuclease with direct antiviral activity. Nucleic Acids Research, 1998. 26(14): p. 3358-3363.
    35. Maeda, T., et al., Growth inhibition of mammalian cells by eosinophil cationic protein. Eur J Biochem, 2002. 269(1): p. 307-16.
    36. Navarro, S., et al., The cytotoxicity of eosinophil cationic protein/ribonuclease 3 on eukaryotic cell lines takes place through its aggregation on the cell membrane. Cell Mol Life Sci, 2008. 65(2): p. 324-37.
    37. Trautmann, A., et al., T cells and eosinophils cooperate in the induction of bronchial epithelial cell apoptosis in asthma. J Allergy Clin Immunol, 2002. 109(2): p. 329-37.
    38. Chang, K.C., et al., TNF-alpha Mediates Eosinophil Cationic Protein-induced Apoptosis in BEAS-2B Cells. BMC Cell Biol, 2010. 11(1): p. 6.
    39. Young, J.D., et al., Mechanism of membrane damage mediated by human eosinophil cationic protein. Nature, 1986. 321(6070): p. 613-6.
    40. Carreras, E., et al., Both aromatic and cationic residues contribute to the membrane-lytic and bactericidal activity of eosinophil cationic protein. Biochemistry, 2003. 42(22): p. 6636-44.
    41. Sorrentino, S., Human extracellular ribonucleases: multiplicity, molecular diversity and catalytic properties of the major RNase types. Cell Mol Life Sci, 1998. 54(8): p. 785-94.
    42. Sorrentino, S. and D.G. Glitz, Ribonuclease activity and substrate preference of human eosinophil cationic protein (ECP). FEBS Lett, 1991. 288(1-2): p. 23-6.
    43. Findlay, D., et al., The active site and mechanism of action of bovine pancreatic ribonuclease. Nature, 1961. 190: p. 781-84.
    44. MallorquI-Fernández, G., et al., Three-dimensional crystal structure of human eosinophil cationic protein (RNase 3) at 1.75 Å resolution. Journal of Molecular Biology, 2000. 300(5): p. 1297-1307.
    45. Rosenberg, H.F. and J.B. Domachowske, Eosinophils, eosinophil ribonucleases, and their role in host defense against respiratory virus pathogens. J Leukoc Biol, 2001. 70(5): p. 691-698.
    46. Rosenberg, H.F., RNase A ribonucleases and host defense: an evolving story. Journal of Leukocyte Biology, 2008. 83(5): p. 1079-1087.
    47. Rosenberg, H.F., Recombinant Human Eosinophil Cationic Protein. Journal of Biological Chemistry, 1995. 270(14): p. 7876-7881.
    48. Gleich, G.J., et al., Biochemical and Functional Similarities between Human Eosinophil-Derived Neurotoxin and Eosinophil Cationic Protein - Homology with Ribonuclease. Proceedings of the National Academy of Sciences of the United States of America, 1986. 83(10): p. 3146-3150.
    49. Calabro, A., et al., Microanalysis of enzyme digests of hyaluronan and chondroitin/dermatan sulfate by fluorophore-assisted carbohydrate electrophoresis (FACE). Glycobiology, 2000. 10(3): p. 273-81.
    50. Torrent, M., M.V. Nogues, and E. Boix, Eosinophil cationic protein (ECP) can bind heparin and other glycosaminoglycans through its RNase active site. J Mol Recognit, 2010.
    51. Toke, O., Antimicrobial peptides: new candidates in the fight against bacterial infections. Biopolymers, 2005. 80(6): p. 717-35.
    52. Mohan, C.G., et al., The crystal structure of eosinophil cationic protein in complex with 2',5'-ADP at 2.0 A resolution reveals the details of the ribonucleolytic active site. Biochemistry, 2002. 41(40): p. 12100-6.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE