研究生: |
李偉德 Wei-te Li |
---|---|
論文名稱: |
明膠作為關節軟骨組織工程支架對軟骨細胞生長的影響 The effect of Gelatin as scaffold for articular cartilage tissue-engineering on the growth of Chondrocytes |
指導教授: |
黃大仁
Ta-Jen Huang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 92 |
中文關鍵詞: | 軟骨組織 、明膠 、支架 、組織工程 |
外文關鍵詞: | gelatin, Chondrocytes, genipin, glutaraldehyde |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本研究使用便宜的天然高分子-明膠,改變明膠重量百分比、反應溫度、交聯劑種類,分別使用混合直接交聯法、先成形再交聯法和先成膠再交聯法,製作多孔性的明膠支架。探討這三種方法的優劣處,經過分析比較後,這三種方法之中先成膠再交聯方法最好,支架孔洞結構較均勻,孔洞大小約300到500μm,適合軟骨細胞貼附生長。
以先成膠再交聯法,製作GA支架和GP支架,GA支架是指用戊二醛(glutaraldehyde)交聯的支架,GP支架是指用茜草(genipin)交聯的支架,來培養軟骨細胞,實驗結果顯示,在GA支架上軟骨細胞貼附的數量較少,無法分泌或合成膠原蛋白或聚葡萄糖胺。可以看到大量軟骨細胞貼附於GP支架上,軟骨細胞會大量分泌或合成膠原蛋白或聚葡萄糖胺,H&E切片圖顯示其細胞密度、型態類似Wistar rat 關節軟骨。
不同軟骨細胞細目種入GP支架上,經過三十天的培養,種入的細胞數目是5×105,無法長滿整個支架,支架上軟骨細胞的型態依然類似Fibroblast,種入的細胞數目是2×106、5×106,支架內的孔洞被軟骨細胞所填滿,其型態類似Wistar rat 關節軟骨,軟骨細胞的數量有持續成長的趨勢,其生長速率隨著時間增加而減緩,並會持續分泌和合成細胞外間質。
Abstract
This research use the cheap gelatin of the native polymer as materials. We change the weight percentage of the gelatin, the reaction
temperature, the type of the cross-linking reactant, make the porous gelatin scaffolds by three methods.
In order to discuss the advantage and disadvantage of these three kinds of methods, we analyze the property of the scaffolds.
Among this three methods, “we make the gelling first, and then cross-linking” is the best methods. The structure of the scaffold is more
uniform. The ranges of the pore size is 300μm to 500μm, and it is suitable for the adhesive growth of the choncytes.
We use “we make the gelling first, and then cross-linking” method to prepare GA and GP scaffolds, GA scaffold use glutaraldehyde as the cross-linking reagent, GP scaffold use genipin as the cross-linking reagent. We culture the choncytes by these two scaffolds. The results show that if
the numbers of the chondrocytes which adhere to GA scaffolds is less,
the chondrocytes can not secrete and synthesize collagen and glycosaminoglycan (GAG).We can observe a large amount of the chondrocytes which adhere to GP scaffolds. The chondrocytes can secrete and synthesize a large amount of collagen and glycosaminoglycan(GAG). The density of chondrocytes in GA scaffold is similar to the choncytes in normal cartilage.
We seed different numbers of the chondrocytes in GP scaffold, thirty days later, the seeding numbers is 5×105 of the phenotype is spindle, and
the seeding numbers is 2×106 or 5×106 of the phenotype is round. The density and the phenotype of chondrocytes is similar to the choncytes in normal cartilage. The numbers of chondrocytes have the trend of the growth, the rates of the growth decrease with time, and can secrete and synthesize extracellular matrix steadily.
第七章 參考文獻
[1] 江鴻生 健康世界 2003年11月p12-14.
[2] 蔡偉博 化工資訊 2002年6月 p41-45.
[3] Shalak R, Fox CF (1988) Preface. In: Tissue Engineering. Shalak R, Fox CF, eds. Alan R.Liss, New York.pp. 26-29.
[4] Patrick CW, Mikos AG, McIntire LV (1998) Prospects of tissue engineering. In: Frontiers in Tissue Engineering.Patrick CW, Mikos AG, McIntire LV, eds. Elsevier Science Ltd, Oxford. pp. 3-11.
[5] Mikos AG, Sarakinos G, Leite SM, Vacanti JP, Langer R (1993a): Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials 14: 323-330.
[6] Hutmacher DW (2001) Scaffold design and fabrication technologies for engineering tissues-state of the art and future perspectives. J Biomat Sci-Polym E 12: 107-124.
[7] Principles of tissue engineering 2nd ed, RP Lanza, R Langer and J Vacanti, xxxvi-xli, 2000.
[8] Burg KJL, Porter S, Kellam JF (2000) Biomaterial developments for bone tissue engineering. Biomaterials 21: 2347-2359.
[9] LeGeros RZ (2002) Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res 395: 81-98.
[10] S.J. Peter, M.J. Miller, A.W. Yasko, M.J. Yaszemski, A.G. Mikos, (1998) Polymer concepts in tissue engineering. J. Biomed. Mater. Res. 43. 422–427.
[11] L.E. Freed, G. Vunjak-Novakovic, R.J. Biron, D.B. Eagles, D.C. Lesnoy, S.K. Barlow, R. Langer, Biodegradable polymer scaffolds for tissue engineering. Bio/Technology 12 (1994) 689–693.
[12] B.S. Kim, D.J. Mooney, Development of biocompatible synthetic extracellular matrices for tissue engineering. TIBTECH16 (1998) 224–230.
[13] Hsu YY, Gresser JD, Trantolo DJ, Lyons CM, Gangadharam PRJ, Wise DL (1997) Effect of polymer foam morphology and density on kinetics of in vitro controlled release of isoniazid from compressed foam matrices. J Biomed Mater Sci 35: 107-116.
[14] Dagalakis N, Flink J, Stasikelis P, Burke JF, Yannas IV (1980) Design of an artificial skin. Part III. Control of pore structure. Biomaterials 14: 511-528.
[15] Doillon CJ, Whyne CF, Brandwein S, Silver FH.(1986) Collagen-based wound dressings: Control of the pore structure and morphology. J Biomed Mater Res 20:1219-1228.
[16] Miyata T, Rubin AL, Dunn MW, Stenzel KH (1980) Collagen soft contact lens. US Patent 4 223 984.
[17] Ruijgrok JM, De Wijhn JR, Boon ME (1994) Optimizing glutaraldehyde crosslinking of collagen: effect of time, temperature and concentration as measured by shrinkage temperature. J Mater Sci: Mater Med 5: 80-87.
[18] Chun-Hsu Yao , Bai-Shuan Liu , Chen-Jung Chang, Shan-Hui Hsub, Yueh-Sheng Chen(2004) Preparation of networks of gelatin and genipin as degradable biomaterials. Materials Chemistry and Physics 83 204–208.
[19] Hye-Won Kang, Yasuhiko Tabata, Yoshito Ikada (1999) Fabrication of porous gelatin scaffolds for tissue engineering. Biomaterials 20 1339-1344.
[20] 蕭與仁 應用化學 第十三章明膠.
[21] AI ET AL.(2002)Gelatin-Glutaraldehyde cross-linking on silicone rubber to increase endothelial cell adhesion and growth. In Vitro Cell. Dev. Biol.Animal 38:487–492.
[22] S.V. Madihally, H.W.T. Matthew (1999) Porous chitosan scaffolds for tissue engineering. Biomaterials 20 1133-1142
[23] Guoping Chen,Takashi Ushida,Tetsuya Tateishi (2001) Development of biodegradable porous scaffolds for tissue engineering.
Materials Science and Engineering C 17 63-69.
[24] CH&EN ET AL.(2004) Tissue Engineering of Cartilage Using a Hybrid Scaffold of Synthetic Polymer and Collagen. Tissue Engineering Volume 10, Number 3/4.
[25] Kim, Y. J., Sah, R. L., Doong, J. Y., Grodzinsky, A. J. (1988). Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal. Biochem. 174, 168-76.
[26] B.O. Enobakhare, D. L. Bader, D. A. Lee(1996) Quantification of sulfated glycosaminoglycans In chondrocyte/alginate culture by use of 1,9-dimethylmethylene blue, Anal Biochem, 243,189-191.
[27] KIM, KNOWLES, AND KIM (2004) Hydroxyapatite and gelatin composite foams processed vianovel freeze-drying and crosslinking for use as temporary hard tissue scaffolds.
[28] E Ruoslahti , (1996) RGD and other recognition sequences for integrins . Annual Review of Cell & Developmental Biology, 12:697-715.
[29] A. Bigi et al. (2002)Stabilization of gelatin films by crosslinking with genipin/Biomaterials 23 4827-4832.
[30] C.-H. Chang et al. (2003)Gelatin-chondroitin-hyaluronan tri-copolymer scaffold for cartilage tissue engineering Biomaterials 24 4853-4858.
[31] S. Miot et al.(2005)Effects of scaffold composition and architecture on human nasal chondrocyte redifferentiation and cartilaginous matrixdeposition. Biomaterials 26 2479-2489.
[32] A. Bigi et al. (2001) Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking.
Biomaterials 22 763-768.
[33] J. S. Johnna, A. G. Mikos, (2000)Review: tissue engineering for regeneration of articular cartilage Biomaterials 21 431-440.
[34] F. M. Watt, (1988)Effect of seeding density on stability of the differentiated phenotype of pig articular chondrocytes in culture, J Cell Science, 89, 373-378.
[35] R. G. LeBaron, K. A. Athanasiou,(2000) Ex vivo synthesis of articular cartilage, Biomaterials, 21,2575-87.