研究生: |
邱晉陞 Chiou, Jin Sheng |
---|---|
論文名稱: |
高靈敏度微波共振探針研製及其射頻電漿鞘層影響分析 Development of a High Sensitivity Plasma Absorption Probe and RF Sheath Effect Analysis |
指導教授: |
柳克強
Leou, Keh Chyang |
口試委員: |
張家豪
CHANG,Chia Hao 吳順吉 Wu, Shun Chi |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 119 |
中文關鍵詞: | 電漿監測 、電漿吸收探針 、懸浮式夾型共振器 |
外文關鍵詞: | Plasma diagnostic, Plmsma absorption probe, Floating hairpin probe |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今半導體製程中,電漿製程的穩定性是影響整個製程良率的關鍵之一,其中電漿密度在電漿製程中扮演一個重要的角色。因此即時監測腔體內電漿的情況,反饋腔體內的電漿狀態藉以調整製程參數來達到製程的需求,顯得相當重要。
本研究用電漿吸收探針(Plasma Absorption Probe, PAP)探討及分析射頻電漿鞘層(RF Sheath)對於實驗量測造成的影響,其原理為饋入微波至探針頂端,當探針結構與電漿中的電子發生共振時,微波能量被電漿大量吸收,此時饋入之微波反射為最小值,透過射頻網絡分析儀得到主動式電漿共振頻譜(Active Plasma Resonance Spectrum, APRS) 讀出反射的最小值,此時的頻率即為吸收頻率。透過模擬軟體(High Frequency Structure Simulator, HFSS)建立真實的電漿環境及探針結構獲得主動式電漿共振頻譜,比較實驗與模擬頻譜在半高寬上差異。
實驗量測的峰值半高寬比模擬結果還來得寬,這將降低對吸收頻率的辨識程度與量測之靈敏度,本研究初步結果為射頻電漿鞘層(RF Sheath)所造成的,透過於實驗量測,增設電容式耦合功率(偏壓功率Bias Power)用以提高電漿電位,預期峰值(peak)半高寬將隨著偏置射頻功率升高而變寬,進而證實射頻電漿鞘層對實驗量測的影響。並且研製新型電漿吸收探針,使量測到共振峰值更加得清晰進而提生共振頻率之解析度;而為了使微波探針量測於PECVD及ALD此種高氣壓與低密度電漿製程環境,因此採用於真空中本身就是共振結構的夾型共振器(Hairpin probe)並且以實驗與模擬方式研製夾型共振器(Hairpin probe)。
Nowadays, in the semiconductor manufacturing process, the stability of plasma processing influence greatly to yield rate, while the plasma density is the key parameters for plasma processing. Therefore, monitoring and maintaining the plasma, by adjusting procedure parameter to achieve its needed state, it the important step to the process.
In this study, plasma absorption probe (PAP) is used to analyze that RF sheath affect the peak of spectrum in experiment. The probe tip is fed into the microwave, when the microwave resonates both with probe structure and with electron in the plasma, the microwave is absorbed greatly by plasma, in this time the microwave have lowest reflected and the absorption frequency can be obtained at the lowest point of the active plasma resonance spectrum (APRS). Using the High Frequency Structure Simulator (HFSS) to set the real plasma environment and probe structure, simulating and obtaining the active plasma resonance spectrum in simulation. Compare with the FWHM of spectrums in experiment,
The peak of spectrum in experiment is more broaden then in simulation, it will reduce the identification of absorption frequency, the slight changes of plasma density will be difficult to detect. The rf sheath effect can be support the phenomenon. In the experiment, using the RF-bias power to increase the plasma potential and finding the peak of spectrum is wider with the rf-bias power increasing, it is also confirm the rf sheath affect the plasma measurement. Developing new structure of plasma absorption probe by coating the dielectric on metal antenna to improve the bandwidth of resonance peak. According to the simulation result, the plasma absorption probe is not suitable for measurement in the high pressure and low-density plasma environment. Finally, the hairpin probe, which is the quarter-wavelength structure of resonant itself, be developed by simulation and experiment and the probe can measure the high pressure (~1 atm) and low plasma density (~2x109 cm-3). It is effective to measure environment the ALD and PECVD process.
[1] H. Kokura, K. Nakamura, I. P. Ghanashev, and H. Sugai, "Plasma absorption probe for measuring electron density in an environment soiled with processing plasmas," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 38, pp. 5262-5266, Sep 1999.
[2] K. Nakamura, M. Ohata, and H. Sugai, "Highly sensitive plasma absorption probe for measuring low-density high-pressure plasmas," Journal of Vacuum Science & Technology A, vol. 21, pp. 325-331, Jan-Feb 2003.
[3] M. Lapke, T. Mussenbrock, R. P. Brinkmann, C. Scharwitz, M. Boke, and J. Winter, "Modeling and simulation of the plasma absorption probe," Applied Physics Letters, vol. 90, Mar 2007.
[4] C. Scharwitz, M. Boeke, S. H. Hong, and J. Winter, "Experimental characterisation of the plasma absorbtion probe," Plasma Processes and Polymers, vol. 4, pp. 605-611, Aug 2007.
[5] C. Scharwitz, "The Plasma Absorption Probe: Optimisation by model-based design variations," Ruhr-Universität Bochum, 2007.
[6] C. Scharwitz, M. Boke, and J. Winter, "Optimised Plasma Absorption Probe for the Electron Density Determination in Reactive Plasmas," Plasma Processes and Polymers, vol. 6, pp. 76-85, Jan 2009.
[7] B. Li, H. Li, Z. P. Chen, J. L. Xie, G. Y. Feng, and W. D. Liu, "Experimental and Simulational Studies on the Theoretical Model of the Plasma Absorption Probe," Plasma Science & Technology, vol. 12, pp. 513-518, Oct 2010.
[8] B. Li, H. Li, Z. P. Chen, J. L. Xie, and W. D. Liu, "Dual-role plasma absorption probe to study the effects of sheath thickness on the measurement of electron density," Journal of Physics D-Applied Physics, vol. 43, Aug 2010.
[9] R. L. Stenzel, "MICROWAVE RESONATOR PROBE FOR LOCALIZED DENSITY-MEASUREMENTS IN WEAKLY MAGNETIZED PLASMAS," Review of Scientific Instruments, vol. 47, pp. 603-607, 1976.
[10] R. B. Piejak, V. A. Godyak, R. Garner, B. M. Alexandrovich, and N. Sternberg, "The hairpin resonator: A plasma density measuring technique revisited," Journal of Applied Physics, vol. 95, pp. 3785-3791, Apr 2004.
[11] R. B. Piejak, J. Al-Kuzee, and N. S. Braithwaite, "Hairpin resonator probe measurements in RF plasmas," Plasma Sources Science & Technology, vol. 14, pp. 734-743, Nov 2005.
[12] G. S. Gogna, C. Gaman, S. K. Karkari, and M. M. Turner, "Dielectric covered hairpin probe for its application in reactive plasmas," Applied Physics Letters, vol. 101, Jul 2012.
[13] G. S. Gogna and S. K. Karkari, "Revised formulation of electron density for partially shielded floating hairpin probe," Applied Physics Express, vol. 7, p. 096101, 2014.
[14] 謝政宏, "研製應用於監測電漿製程系統中電漿密度之傳輸線式微波感測器," 碩士, 工程與系統科學系, 國立清華大學, 新竹市, 2004.
[15] 王瀚廷, "研製應用於監測電漿製程系統中電漿密度之平面式微波感測器," 碩士, 工程與系統科學系, 國立清華大學, 新竹市, 2005.
[16] 鄭景元, "應用於監測電漿製程系統中電漿密度之傳輸線式微波干涉儀之研製," 碩士, 工程與系統科學系, 國立清華大學, 新竹市, 2006.
[17] 張家豪, "電感耦合式氬氣體電漿源不穩定現象之動態特性量測分析研究," 博士, 工程與系統科學系, 國立清華大學, 新竹市, 2007.
[18] 梁耀文, "研製應用於監測電漿密度之微帶線式微波干涉儀," 碩士, 工程與系統科學系, 國立清華大學, 新竹市, 2007.
[19] 黃竑旻, "電漿電子密度與射頻峰值電壓回授控制電漿蝕刻製程之研究," 碩士, 工程與系統科學系, 國立清華大學, 新竹市, 2008.
[20] 顏才華, "空橋式微帶線微波干涉儀之研製," 碩士, 工程與系統科學系, 國立清華大學, 新竹市, 2008.
[21] 王景弘, "M型微帶線微波干涉儀之研製及應用於電漿密度量測分析探討," 碩士, 工程與系統科學系, 國立清華大學, 新竹市, 2010.
[22] C. H. Hsieh, Y. W. Liang, J. Y. Jeng, J. S. Chiou, K. C. Leou, and C. Lin, "Development of a ridged microstrip microwave interferometer for plasma electron density measurements," Plasma Sources Science & Technology, vol. 24, May 2015.
[23] 陳穩智, "電漿吸收探針模擬與實驗分析," 碩士, 工程與系統科學系, 國立清華大學, 新竹市, 2012.
[24] M. Lapke, T. Mussenbrock, and R. P. Brinkmann, "The multipole resonance probe: A concept for simultaneous determination of plasma density, electron temperature, and collision rate in low-pressure plasmas," Applied Physics Letters, vol. 93, Aug 2008.
[25] M. Lapke, J. Oberrath, T. Mussenbrock, and R. P. Brinkmann, "Active plasma resonance spectroscopy: a functional analytic description," Plasma Sources Science & Technology, vol. 22, Apr 2013.
[26] M. Lapke, J. Oberrath, C. Schulz, R. Storch, T. Styrnoll, C. Zietz, et al., "The multipole resonance probe: characterization of a prototype," Plasma Sources Science & Technology, vol. 20, Aug 2011.
[27] T. Styrnoll, J. Harhausen, M. Lapke, R. Storch, R. P. Brinkmann, R. Foest, et al., "Process diagnostics and monitoring using the multipole resonance probe in an inhomogeneous plasma for ion-assisted deposition of optical coatings," Plasma Sources Science & Technology, vol. 22, Aug 2013.
[28] I. Liang, K. Nakamura, and H. Sugai, "Modeling Microwave Resonance of Curling Probe for Density Measurements in Reactive Plasmas," Applied Physics Express, vol. 4, Jun 2011.
[29] A. Pandey, K. Nakamura, and H. Sugai, "Opto-Curling Probe for Simultaneous Monitoring of Optical Emission and Electron Density in Reactive Plasmas," Applied Physics Express, vol. 6, May 2013.
[30] A. Pandey, W. Sakakibara, H. Matsuoka, K. Nakamura, and H. Sugai, "Curling probe measurement of electron density in pulse-modulated plasma," Applied Physics Letters, vol. 104, Jan 2014.
[31] J. Oberrath and R. P. Brinkmann, "Active plasma resonance spectroscopy: a kinetic functional analytic description," Plasma Sources Science & Technology, vol. 23, Aug 2014.
[32] M. A. Lieberman and A. J. Lichtenberg, "Principles of Plasma Dischargesand Materials Processing,2nd Edition," John Wiley & Sons, 2005.
[33] A. Meige, O. Sutherland, H. B. Smith, and R. W. Boswell, "Ion heating in the presheath," Physics of Plasmas, vol. 14, Mar 2007.
[34] A. V. Phelps, "CROSS-SECTIONS AND SWARM COEFFICIENTS FOR NITROGEN-IONS AND NEUTRALS IN N2 AND ARGON IONS AND NEUTRALS IN AR FOR ENERGIES FROM 0.1 EV TO 10 KEV," Journal of Physical and Chemical Reference Data, vol. 20, pp. 557-573, 1991.
[35] H. Sugai and K. Nakamura, "Novel Plasma Monitoring by Surface Wave Probe."
[36] D. M. Pozar, "Microwave Engineering, 4th Edition," 2012.