研究生: |
洪國永 Kuo Yung Hung |
---|---|
論文名稱: |
整合三維光學微結構之蛋白質微陣列螢光感測系統 Integrated 3D Optical Micro Structures for Fluorescence Sensing System of Protein Microarray |
指導教授: |
曾繁根
Fan Gang Tseng |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2004 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 177 |
中文關鍵詞: | 螢光感測器 、崩潰型光感測器 、三維傾斜鏡面 、三維灰階光罩 、漸逝波 |
外文關鍵詞: | fluorescence sensor, avalanche photo diode, 3D inclined mirror, 3D gray mask, evanescent wave |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文整合半導體元件技術與微機電製程,發展一可攜式、平行檢測之蛋白質微陣列螢光檢測晶片。以漸逝波(Evanescent wave)激發螢光檢體,藉由批次、陣列式設計之檢測晶片,完成螢光點強度及形貌之辨別,進而達到快速且同時檢測多種疾病檢體之目的。光感測器採近距離檢測螢光之方式,除可增加光吸收效率外,亦可免除強激發光源之使用,避免傷害蛋白質檢體。因此,整體設計有別於普遍研究之微流體螢光檢測系統之設計及傳統生醫掃描系統之檢測機制。
此檢測晶片整合互補式金屬-氧化物半導體(CMOS)製程之雪崩型感光二極體(Avalanche Photo Diode, APD)、表面張力暨自我成型之高數值孔徑微透鏡及微傾斜面鏡結構而完成。雪崩型感光二極體作為光電訊號之轉換器。微透鏡作為收光及聚光之結構、增加微弱光訊號之累積、減少表面之光吸收效應並減少介面耦合所產生之光訊號損失。而具多重角度之三維傾斜V型面鏡,採用傾斜曝光技術及光於基材表面反射之特性製作,可區隔相鄰兩螢光點之干擾。此外,為減少外部電源產生之雜訊且縮小檢測晶片之體積,故製作一不需變壓器而能產生0-90V、4mV低雜訊之雪崩型感光二極體微型電源驅動電路(5cm X 5cm)。
雪崩型感光二極體整合微透鏡結構,靈敏度可增加25%,因此將有助於提昇螢光檢測極限(Limit of detection)。目前整合完成之螢光檢測晶片,最小可檢測之蛋白質濃度為2ng/ml。
此蛋白質微陣列螢光檢測晶片,可解決傳統生醫檢測系統過於龐大、昂貴的缺點,以實現Lab on a Chip的理想。
This thesis presents a novel micro fluorescence detection chip system for protein microarray detection in parallel applied to a 3-in-1 protein chip system. This portable microchip consists of a monolithic integration of CMOS-based Avalanche Photo Diode (APD) coupled with 3-dimensional (3-D), polymer microlens with high numerical aperture (NA) for signal enhancement. In the current study, a novel approach was proposed to effectively fabricate the aforementioned semi-sphere polymer microlens (SU-8 or UV curable optical oil for better light transparency performance) based on thermal-capillary force and well-defined hydrophobic (rings of Teflon) and hydrophilic (silicone dioxide surface) regions with self-alignment feature. Microlenses as small as 5 μm in radius were successfully fabricated with a coefficient of variation better than 2.8 % for lens-to-lens variation. The NA could reach as large as 0.66. Also, a novel 3-D glycerol-compensated, inclined-exposure technology was adopted to fabricate inclined microstructures, which were incorporated into the microchip later to make one less susceptible to adjacent fluorescent signals. This technology could fabricate 19-90o inclined structures on SU-8 negative tone resist with thickness from 100 to 1000 μm. The surface roughness, measured by atomic force microscope, was below 7 nm for various inclined angles, a roughness good enough for optical applications. With the use of 3-D shadow mask and glycerol-compensated exposure technology, a variety of round surfaces with different radius could be fabricated with well-controlled exposure doses, enabled the realization of spherical micromirrors and plane concave lenses.
Three generation of CMOS-based APD were developed. The device initially consists of a single APD with a 500μm minimum detection diameter, dark current of about 1-2 μA, and avalanche voltage of 95 V. It was consecutively evolved to a 5x5 array of APD with a 20μm minimum detection diameter, lower dark current of tens of nA, and an improved avalanche voltage of 22.5 V. The APDs were later fabricated in such a way that seven single APD were grouped together as a single array for shape detection and arranged in multiple forms of 3x3 (63 APDs) or 4x4 (112 APDs) arrays. A new APD electrical driver circuitry was developed, without the need of voltage converter and capable of producing 0-90 V low noise signal. The developed micro fluorescence detection chip system was tested and found capable of detecting protein concentration as low as 2 ng/μl. With integrated polymer microlens, the sensitivity could reach 39.7 A/W, an improvement of about 25%. The current exploration of the novel integration of APD arrays, polymer microlens arrays, and microfabricated inclined structures on a single microchip proved to be an excellent sensing architecture that hold promise to be inexpensive, portable, parallel, and micro-scale solutions for fluorescence detection.
[1] 林世章, 微陣列壓印晶片之研發, 國立清華大學博士論文, 2003.
[2] T. V. Dinh, “Development of a DNA biochip: principle and applications,” Sensors and Actuators B, 51, pp. 52-59, 1998.
[3] P. Rizo, Bio-MEMS at LETI: Detection, CEA –LETI: Laboratory of reading system for Biology, pp. 1-19, 2003.
[4] G. Bardeletti, F. Sechaud and P. R. Coulet, “Amperometic enzyme electrodes for substrate and enzyme activity determinations,” Biosensor Principles and Applications (Eds. L. J. Blum and P. R. Coulet), Marcel Dekker Inc., New York, pp. 7-45, 1991.
[5] R. L. Solsky, “Ion-selective electrodes,” Anal. Chem., 60, pp. 106-113, 1988.
[6] O. S. Wolfbeis, Fiber-optic sensors for chemical parameters of interest in biotechnology, Biosensors International Workshop. GBF Monographs, 10, pp. 197-206, 1987.
[7] J. Homola, “Present and Future of Surface Plasmon Resonance Biosensors,” Analytical and Bioanalytical Chemistry, 377, pp. 528-539, 2003.
[8] S. Chang, C. W. Lin, S. M. Lin, “Design and Fabrication of Array Format SPR Chips in Microstructure Monolayers Detection,” 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology, pp. 4-6, 2002.
[9] G. A. Sauerbrey, “Use of a quartz vibrator from weight thin films on a microbalance,” Z. Physik, 155, pp. 206-210, 1959.
[10] C. D. Garcia, C. S. Henry, “Direct Determination of Carbohydrates, Amino Acids, and Antibiotics by Microchip Electrophoresis with Pulsed Amperometric Detection,” Anal. Chem., 75(18), pp. 4778-4783, 2003.
[11] C. C. Wu, R. G. Wu, J. G. Huang, Y. C. Lin, H. C. Chang, “Three-Electrode Electrochemical Detector and Platinum Film Decoupler Integrated with a Capillary Electrophoresis Microchip for Amperometric Detection,” Anal. Chem., 75(4), pp. 947-952, 2003.
[12] B. F. Liu, M. Ozaki, Y. Utsumi, T. Hattori, S. Terabe, “Chemiluminescence Detection for a Microchip Capillary Electrophoresis System Fabricated in Poly(dimethylsiloxane),” Anal. Chem., 75(1), pp. 36-41, 2003.
[13] V. Namasivayam, R. Lin, B. Johnson, S. Brahmasandra, Z. Razzacki, D. T. Burke, M. A. Burns, “Advances in on-chip photodetection for applications in miniaturized genetic analysis systems,” J. Micromech. Microeng., 14, pp. 81-90, 2004.
[14] T. Nakagama, T. Meada, K. Uchiyama, T. Hobo, “Monitoring nano-flow rate of water by atomic emission detection using helium radio-frequency plasma,” Analyst, 128, pp. 543-546, 2003.
[15] 張煥宗, 曾韋龍, “光學偵測法於生物感測器之應用,” 光訊89期, pp. 1-5, 2001.
[16] 財團法人生物技術開發中心, 生物技術的發展與應用, 九州圖書公司, 民國86年.
[17] 張煥宗, 謝明穆, 曾韋龍, “雷射激發螢光偵測器於生物分析中之應用,” 光訊76期, pp. 20-23, 1999.
[18] 蔡逸勤, 蛋白質微陣列晶片之壓印機構設計與其影像檢測, 國立清華大學碩士論文, 2002.
[19] 王應瓊, 儀器分析, 中央圖書出版社出版, 1994.
[20] T. H. Wang, P. K. Wong, and C. M. Ho, “Electrical Molecular Focusing for Laser Induced Fluorescence Based Single DNA Detection,” IEEE MEMS’ 02, Las Vegas, Nevada, USA, Jan. 20-24, pp. 15-18, 2002.
[21] J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. Rooij, and R. Dandliker, “Microlens systems for fluorescence detection in chemical Microsystems,” Optical Engineering, Volume 40, Issue 5, pp. 814-821, 2001.
[22] GenePix 4000B Micro Array Scanner, http://www.axon.com/l.
[23] M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, ”An Integrated Fluorescence Detection System in Poly(dimethylsiloxane) for Microfluidic Applications,” Anal. Chem., 73, pp. 4491-4498, 2001.
[24] K. Ikuta, S. Maruo, and S. Kojima, “New Micro Stereo Lithography for Freely Movable 3D Micro Structure,” Journal of the IEEE’99, pp. 290-295, 2000.
[25] J. Seo and L. P. Lee, “Integrated Microfludic Optical Systems(iMOS) with LED,” Proc. of the mTAS’02 Symposium, Nara, Japan, Nov. 3-7, pp. 284-286, 2002.
[26] T. Kamei, B. M. Paegel, J. R. Scherer, A. M. Skelley, R. A. Street, R. A. Mathies, “Integrated Hydrogenated Amorphous Si Photodiode Detector for Microfluidic Bioanalytical Devices,“ Analytical Chemistry, 75 (20), pp. 5300-5305, 2003.
[27] E. P. Thrush, O. Levi, K. Wang, J. S. Harris, and S. J. Smith, “High-throughput integration of optoelectronics devices for biochip fluorescent detection,” Anal. Chem., 76, pp. 3285-3298, 2004.
[28] M. Oheim and W. Stühmer, “Multiparameter Evanescent-Wave Imaging in Biological Fluorescence Microscopy,” IEEE Journal Of Quantum Electronics, Vol. 38, Issue 2, pp. 142-148, 2002.
[29] Uppsala, Real-time vitamin analysis (biosensor technology), Sweden BIACORE Technical notes, pp. 1-3, 2001.
[30] B. P. Nelson, T. E. Grimsrud, M. R. Liles, R. M. Goodman, and R. M. Corn, “Surface Plasmon Resonance Imaging Measurements of DNA and RNA Hybridization Adsorption onto DNA Microarrays,” Anal. Chem., 73, pp. 1-7, 2001.
[31] J. R. Epstein, M. Lee, D. R. Walt, “High-Density Fiber-Optic Genosensor Microsphere Array Capable of Zeptomole Detection Limits,” Anal. Chem., 74(8), pp. 1836-1840, 2002.
[32] T. B. Tims, D. V. Lim, “Confirmation of viable E. coli O157:H7 by enrichment and PCR after rapid biosensor detection,” Journal of Microbiological Methods 55 (1), pp. 141-147, 2003.
[33] S. F. Cheng, L. K. Chau, “Colloidal Gold-Modified Optical Fiber for Chemical and Biochemical Sensing,” Anal. Chem., 75(1), pp. 16-21, 2003.
[34] S. Camou, J. P. Gouy, H. Fujita and T. Fujii, "Design of a 2-D optical lens on a PDMS micro-chip to improve fluorescence spectroscopy using integrated optical fibers," Proceedings of Optical MEMS 2001, Okinawa (Japan), pp. 133-134, 2001.
[35] E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, C. Otto, “Integrated optical microcavities for enhanced evanescent-wave spectroscopy,” Optics Letters, Vol. 27, Issue 17, pp. 1504-1506, 2002.
[36] T. Kamei, B. M. Paegel, J. R. Scherer, A. M. Skelley, R. A. Street, and R. A. Mathies, “Integrated Hydrogenated Amorphous Si Photodiode Detector for Microfluidic Bioanalytical Devices,” Anal. Chem., 75, pp. 5300-5305, 2003.
[37] G. T. A. Kovacs, Micromachined Transducers Sourcebook, The McGraw-Hill Companies, Inc., 1998.
[38] HAMAMATSU data sheet, Photomultiplier Tubes, Apr. 2000.
[39] B. Dolgoshein, “The silicon photomultiplier and its possible application,” Transparency of 3rd BEAUNE conference and its proceeding, Geneve, pp. 12-16, 2002.
[40] B. Dolgoshein, “An Advanced study of Silicon Photomultiplier,” ICFA Instrumentation Bulletin, pp. 1-14, 2002.
[41] HAMAMATSU data sheet, Characteristics and use of Si APD (Avalanche Photodiode), Technical information SD-28, Jul. 2001.
[42] H. Dautet, P. Deschamps, B. Dion, A. D. MacGregor, D. MacSween, R. J. McIntyre, C. Trottier, P. P. Webb, “Photon-counting techniques with silicon avalanche photodiodes,” Applied Optics, 32 (21), pp. 3894-3900, 1993.
[43] P. P. Webb, R. J. Mclntyre, and J. Conradi, “Properties of Avalanche Photodiodes,” RCA Review, Vol. 35, pp. 1-55, June 1974.
[44] P. Buzhan, B. Dolgoshein_, A. Ilyin, V. Kantserov, V. Kaplin, A. Karakash, A. Pleshko, E. Popova, S. Smirnov, Yu. Volkov Moscow Engineering and Physics Institute, Moscow, Russia L. Filatov and S. Klemin Pulsar" Enterprise, Moscow, Russia F. Kayumov, “An advanced study of silicon photomultiplier-Avalanche Photodiodes: A User’s Guide”, EG&G Optoelectronics Canada, pp. 1-6, 2000.
[45] R. J. Mclntyre, “Multiplication Noise in Uniform Avalanche Diodes,” IEEE Trans. Electron Devices, ED-13, pp. 164-168, 1966.
[46] S. D. Cova, A. L. Lacaita, F. Zappa, P. G. Lovati, “Avalanche photodiodes for near-infrared photon-counting,” SPIE Proc.-The International Society for Optical Engineering, Vol. 2388, pp. 56-66, 1995.
[47] S. Vasile, P. Gothoskar, R. Farrell and D. Sdrulla, “Photon detection with high gain avalanche Photodiodes arrays,” IEEE Transactions On Nuclear Science, Vol. 45, No. 3, pp. 720-722, 1998.
[48] C. W. Thiel, An Introduction to Semiconductor Radiation Detectors, Physics Department Montana State University Bozeman Montana, Handout, 2002.
[49] O. Tabata, K. Terasoma, N. Agawa, and K. Yamamoto, “Moving Mask LIGA (M2LIGA) Process for Control of Side Wall Inclination,” Journal of the IEEE, pp. 252-256, 1999.
[50] J. G. E. Gardeniers, J. W. Berenschot, M. J. de Boer, etc., “Silicon Micromachined Hollow Microneedles for Transdermal Liquid Transfer,” Proc. IEEE Int. Conf. on MEMS’02, Las Vegas, USA, Jan. 20-24, pp. 141-144, 2002.
[51] A. Armand, A. D. Stroock, D. K. Stephan and M. George, “Patterning Flows Using Grooved Surfaces: Application to Microfluidics,” Proc. of the mTAS’02 Symposium, Nara, Japan, Nov. 3-7, pp. 620-622, 2002.
[52] M. O. Freeman, H. F. Shin, H. R. Chang, J. K. Wang, C. L. Chen, R. N. Chuang, M. W. Chang, “High Efficiency HOEs for Holographic DVD Pickup Heads,” IEEE Transactions on Magnetics, Vol. 34, NO. 2, pp. 456-458, 1998.
[53] C. Beuret, G. A. Racine, J. Gobet, R. Luthier, and N. F. Rooij, “Microfabrication of 3D Multidirectional Inclined Structures by UV Lithography and Electroplating,” Proc. of the MEMS’94, pp.81-85, 1994.
[54] H. Sato, T. Kakinuma, J. S. Go and S. Shoji, “A Novel Fabrication of In-Channel 3-D Micromesh Structure Using Maskless Multi-Angle Exposure and Its Microfilter Application”, Proc. of the MEMS’03, Kyoto, Japan, Jan. 19-23, pp. 223-226, 2003.
[55] M. Han, W. Lee, S. K. Lee, and S. S. Lee, “Microfabrication of 3D Oblique Structures by Inclined UV Lithography,” Proc. of the mTAS’02 Symposium, Nara, Japan, Nov. 3-7, pp.106-108, 2002.
[56] Y. K. Yoon, J. H. Park, F. Cros and M. G. Allen, “Integrated Vertical Screen Microfilter System Using Inclined SU-8 Structures,” Proc. of the MEMS’03, Kyoto, Japan, January 19-23, pp. 227-230, 2003
[57] K. Y. Hung, and F. G. Tseng, “A Novel Fabrication Technology for Smooth 3D Inclined Polymer Microstructures with Adjustable Angles,” IEEE transducers’03, Boston, USA, Jun. 8-12, pp. 821-824, 2003.
[58] W. Daschner, R. D. Stein, P. Long, C. Wu, S. H. Lee, “One-step lithography for mass production of multilevel diffractive optical elements using high energy beam sensitive (HEBS) gray-level mask,” Proc. SPIE: Diffractive and Holographic Optics Technology III, Vol. 2689, pp. 153–155, 1996.
[59] C. M. Waits, A. Modafe and R. Ghodssi, “Investigation of gray-scale technology for large area 3D silicon MEMS structures,” J. Micromech. Microeng., 13, pp. 170-177, 2003.
[60] 施敏, Semiconductor Devices Physics and Technology, John Wiley & Sons, 1985.
[61] S. E. MILLER, E. A. J. MARCATILI, T. G. LI, "Research Toward Optical-Fiber Transmission Systems," Proceedings Of the IEEE, Bell Laboratories, Holmdel, NJ, 1973.
[62] R. T. Gill, E. Katsoulakis, W. Schmitt, G. T. Oldenburg, J. Misra, and G. Stephanopoulos, ”Genome-Wide Dynamic Transcriptional Profiling of the Light-to-Dark Transition in Synechocystis sp. Strain PCC 6803,“ Journal of Bacteriology, Vol. 184, No. 13, pp. 3671-3681, 2002.
[63] H. Spieler, Introduction to Radiation Detectors and Electronics, Handout, 1998.
[64] B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-Mode Avalanche Photodiodes for Three-Dimensional Imaging,” Lincoln Laboratory Journal, Vol. 13, Number 2, pp. 335-350, 2002.
[65] M. Fukuda, Optical Semiconductor Devices, John Wiley & Sons, 1998.
[66] S. d. Moon, N. Lee, S. Kang, “Fabrication of a microlens array using micro-compression molding with an electroformed mold insert,” Journal Of Micromechanical and Microengineering, Vol. 13, pp. 98-103, 2003.
[67] D. M. Hartmann, O. Kibar, and S. C. Esener, “Characterization of a polymer microlens fabricated by use of the hydrophobic effect,” Optics Letters, Vol. 25, No. 13, pp. 380-383, 2000.
[68] W. R. Cox, C. Guan, D. J. Hayes and D. B. Wallace, “Microjet Printing of Micro-Optical Interconnects,” Int. J. of Microcircuits and Elect. Packing, Vol. 23, No. 3, pp. 346-351, 2000.
[69] J. Aizenberg, A. Tkachenko, S. Weiner, L. Addadi, and G. Hendler, “Calcitic microlenses as part of the photoreceptor system in brittlestars,” letters to Nature, Vol. 412, pp. 819-822, 2001.
[70] M. H. Wu, K. E. Paul, and G. M. Whitesides, “Patterning flood illumination with microlens arrays,” APPLIED OPTICS, Vol. 41, No. 13, pp. 2575-2585, 2002.
[71] J. L. Wilbur, A. Kumar, H. A. Biebuyck, E. Kim, G. M. Whitesides, "Microcontact printing of self-assembled monolayers: Applications in microfabrication," Nanotechnology, 7 (4), pp. 452-457, 1996.
[72] K. H. Jeong, G. L. Liu, N. Chronis, and L. P. Lee, “Tunable Microdoublet Lens Array,” IEEE MEMS, pp. 37-40, 2004.
[73] K. H. Jeong and L. P. Lee, “A new Method of Increasing Numerical Aperture of Microlens for Biophotonic MEMS,” IEEE-EMBS, pp. 380-383, 2002.
[74] Y. J. Chuang., F. G. Tseng., W. K. Lin, “Reduction of Diffraction Effect of UV Exposure on SU-8 Negative resist by Air Gap Elimination,” Microsystem Technologies 8, pp. 308-313, 2002.
[75] ORIEL Instruments, Transmittance and focal length calculations, Application Notes, pp. 15-22, 2000.
[76] J. Williams, Application Note 92, Linear Technology Corporation, 2001.
[77] 古燕華, 蛋白質微陣列反應晶片材質與自我組裝單層分子之表面處理研究, 國立清華大學碩士論文, 2002.
[78] 黃朝裕, “壓印式蛋白質微陣列晶片之印台研發,” 國立清華大學碩士論文, 2001.