簡易檢索 / 詳目顯示

研究生: 洪國永
Kuo Yung Hung
論文名稱: 整合三維光學微結構之蛋白質微陣列螢光感測系統
Integrated 3D Optical Micro Structures for Fluorescence Sensing System of Protein Microarray
指導教授: 曾繁根
Fan Gang Tseng
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2004
畢業學年度: 93
語文別: 中文
論文頁數: 177
中文關鍵詞: 螢光感測器崩潰型光感測器三維傾斜鏡面三維灰階光罩漸逝波
外文關鍵詞: fluorescence sensor, avalanche photo diode, 3D inclined mirror, 3D gray mask, evanescent wave
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文整合半導體元件技術與微機電製程,發展一可攜式、平行檢測之蛋白質微陣列螢光檢測晶片。以漸逝波(Evanescent wave)激發螢光檢體,藉由批次、陣列式設計之檢測晶片,完成螢光點強度及形貌之辨別,進而達到快速且同時檢測多種疾病檢體之目的。光感測器採近距離檢測螢光之方式,除可增加光吸收效率外,亦可免除強激發光源之使用,避免傷害蛋白質檢體。因此,整體設計有別於普遍研究之微流體螢光檢測系統之設計及傳統生醫掃描系統之檢測機制。
    此檢測晶片整合互補式金屬-氧化物半導體(CMOS)製程之雪崩型感光二極體(Avalanche Photo Diode, APD)、表面張力暨自我成型之高數值孔徑微透鏡及微傾斜面鏡結構而完成。雪崩型感光二極體作為光電訊號之轉換器。微透鏡作為收光及聚光之結構、增加微弱光訊號之累積、減少表面之光吸收效應並減少介面耦合所產生之光訊號損失。而具多重角度之三維傾斜V型面鏡,採用傾斜曝光技術及光於基材表面反射之特性製作,可區隔相鄰兩螢光點之干擾。此外,為減少外部電源產生之雜訊且縮小檢測晶片之體積,故製作一不需變壓器而能產生0-90V、4mV低雜訊之雪崩型感光二極體微型電源驅動電路(5cm X 5cm)。
    雪崩型感光二極體整合微透鏡結構,靈敏度可增加25%,因此將有助於提昇螢光檢測極限(Limit of detection)。目前整合完成之螢光檢測晶片,最小可檢測之蛋白質濃度為2ng/ml。
    此蛋白質微陣列螢光檢測晶片,可解決傳統生醫檢測系統過於龐大、昂貴的缺點,以實現Lab on a Chip的理想。


    This thesis presents a novel micro fluorescence detection chip system for protein microarray detection in parallel applied to a 3-in-1 protein chip system. This portable microchip consists of a monolithic integration of CMOS-based Avalanche Photo Diode (APD) coupled with 3-dimensional (3-D), polymer microlens with high numerical aperture (NA) for signal enhancement. In the current study, a novel approach was proposed to effectively fabricate the aforementioned semi-sphere polymer microlens (SU-8 or UV curable optical oil for better light transparency performance) based on thermal-capillary force and well-defined hydrophobic (rings of Teflon) and hydrophilic (silicone dioxide surface) regions with self-alignment feature. Microlenses as small as 5 μm in radius were successfully fabricated with a coefficient of variation better than 2.8 % for lens-to-lens variation. The NA could reach as large as 0.66. Also, a novel 3-D glycerol-compensated, inclined-exposure technology was adopted to fabricate inclined microstructures, which were incorporated into the microchip later to make one less susceptible to adjacent fluorescent signals. This technology could fabricate 19-90o inclined structures on SU-8 negative tone resist with thickness from 100 to 1000 μm. The surface roughness, measured by atomic force microscope, was below 7 nm for various inclined angles, a roughness good enough for optical applications. With the use of 3-D shadow mask and glycerol-compensated exposure technology, a variety of round surfaces with different radius could be fabricated with well-controlled exposure doses, enabled the realization of spherical micromirrors and plane concave lenses.
    Three generation of CMOS-based APD were developed. The device initially consists of a single APD with a 500μm minimum detection diameter, dark current of about 1-2 μA, and avalanche voltage of 95 V. It was consecutively evolved to a 5x5 array of APD with a 20μm minimum detection diameter, lower dark current of tens of nA, and an improved avalanche voltage of 22.5 V. The APDs were later fabricated in such a way that seven single APD were grouped together as a single array for shape detection and arranged in multiple forms of 3x3 (63 APDs) or 4x4 (112 APDs) arrays. A new APD electrical driver circuitry was developed, without the need of voltage converter and capable of producing 0-90 V low noise signal. The developed micro fluorescence detection chip system was tested and found capable of detecting protein concentration as low as 2 ng/μl. With integrated polymer microlens, the sensitivity could reach 39.7 A/W, an improvement of about 25%. The current exploration of the novel integration of APD arrays, polymer microlens arrays, and microfabricated inclined structures on a single microchip proved to be an excellent sensing architecture that hold promise to be inexpensive, portable, parallel, and micro-scale solutions for fluorescence detection.

    中文摘要 …..i 英文摘要………………………………………………………………...iii 誌謝………………………………………………………………………v 目錄 ....vi 圖目錄 ..…x 表目錄 ..xvii 第一章緒論 …..1 1.1 研究背景及動機 …..1 1.2 研究目的 …..6 1.3光學檢測晶片設計原理 …..7 第二章 文獻回顧………………………………………………….……9 2.1 生物感測法…………...…………………………………….9 2.1.1電化學生物感測器………………………………….10 2.1.2離子選擇型場效電晶體….…………………………10 2.1.3光纖生物感測器…………..…….…………………..11 2.1.4 壓電晶體生物感測器……..………….…………….16 2.2 生醫光電技術……………………………………………..19 2.2.1遠場激發遠場收光……………………………….…22 2.2.1.1 Laser Induced Fluorescence……….…………….22 2.2.1.2 Multi-layer System…………………………..24 2.2.1.3 Bio Scanner System…………………………25 2.2.1.4 市售APD產品應用1………………………….26 2.2.1.5 市售APD產品應用2………………………….28 2.2.1.6 iMOS (Integrated Microfluidic Optical Systems).29 2.2.1.7 Integrated Hydrogenated Amorphous Si Photodiode Detector for Microfluidic Bioanalytical Devices………..29 2.2.1.8 High throughput integration of optoelectronics devices for biochip fluorescent detection………....…….31 2.2.2 漸逝波激發遠場收光………………...…………….34 2.2.2.1 漸逝波影像……………………………………..34 2.2.3 總結……………………..………………….……35 2.3 光感測器 …37 2.3.1 光電倍增管……………………………………….38 2.3.2 PIN光電二極體……………………….…….…….39 2.3.3 APD光電二極體……………………..…..……….39 2.3.4 PIN、PMT及APD特性比較…………………40 2.3.5 感測器材料選擇………………………………42 2.4 鏡面………………………………………………………..44 2.5 曲面………………………………………………………..44 第三章 APD原理、設計及製程……………………….……………...46 3.1 APD原理及特性參數………………………..…………...46 3.1.1 操作原理……………………...…………………….46 3.1.2雪崩放大原理……………………………………….47 3.1.3 APD特性參數………………….…..……………….49 3.1.4 APD的層級結構………………….…..…………….49 3.2 最小偵測濃度之估算……………………………………51 3.3 設計上的考量…………..………………………………..53 3.3.1 內部參數考量………………………………………53 3.3.2 結構上的考量……………………………………..54 3.4 模擬感光元件製程參數…………………………………..59 3.4.1 摻雜濃度vs崩潰電壓……………....……….59 3.4.2 sensor輸出光電流的計算…………….……….59 3.4.3 增益值的計算…………………………….…….60 3.4.4 離子佈植…………………………………….…..61 3.5 SUPREM及MEDICI模擬結果………………………66 3.5.1 建立元件層級結構………………………………...66 3.5.2 MEDICI初步模擬結果…………………………66 3.6 製程設計…………………………………….………..….68 3.6.1 設計感光元件製程…………………….………..….69 第四章 光學微結構之設計 …76 4.1 透鏡……………………………………………………..…76 4.1.1 微透鏡陣列之設計……………………………….77 4.1.2加透鏡後光穿透深度及收光效果增加之計算…78 4.1.3 APD與微透鏡製程之整合………………………..80 4.2鏡面………………………………………………………81 4.2.1 光路設計-甘油與空氣介質中光路徑的差異..……81 4.2.2 製程……………………………………………..85 4.2.2.1 Dove prism……………………………..85 4.2.2.2 V-shape結構……………………………….85 4.2.3 整合APD+LENS+MIRROR之製程步驟...89 4.2.4 微光學之應用…………………………………...91 4.3 曲面…………………………………………………….94 4.3.1 製造觀念……………………………………….94 4.3.2 計算曲面結構的穿透率………………………… 98 4.3.3 光學應用………………………………………104 第五章 實驗結果與討論 ..105 5.1 APD製程……………...………………………………....105 5.1.1 第一代製程結果……………………….…….105 5.1.2 第二代製程結果……………………………..108 5.1.3 第三代製程結果………………………….………113 5.1.4 加透鏡後之I-V特性圖……………………..…….118 5.1.5 APD逆向電壓驅動電路…………………………120 5.2 微透鏡製程………………………………………...…….123 5.3 鏡面製程………………………………………...……….127 5.4曲面製程………………………………………………..134 第六章 結論………………………………………………………137 參考文獻 ..141 附錄A ..149 附錄B…………………………………………………………………155 附錄C…………………………………………………………………162 附錄D…………………………………………………………………169 個人資料………………………………………………………………173 圖目錄 圖1.1 所發展之壓印晶片在表面處理過 APTS+BS3的玻片上所壓印出之5X5蛋白質陣列 …..3 圖1.2 所發展壓印系統的設計及操作原理 …..4 圖1.3 Vo-Dinh Tuan 所提之DNA生物晶片示意圖(左圖)及微晶片整合電路系統(右圖) ..…5 圖1.4 光學檢測晶片3D示意圖 …..8 圖2.1 目前較可以有效掌握的各種感測元件及其感測濃度範圍…….9 圖2.2 葡萄糖酵素電極反應原理…………………………………..….10 圖2.3 ISFET結構示意圖…………………………………………….....11 圖2.4 (a)光纖感測器的光學路徑與典型的儀器系統(b)波導管感測器示意圖……………………………………...…………………..13 圖2.5 左圖為SPR感測的一般組態,分為(a)菱鏡耦合基礎(prism coupler-based)系統, ATR法。(b)光柵耦合基礎(grating coupler-based)系統。(c)光波導基礎(waveguide-based optical)系統。上圖(d)則為SPR實際運用及量測結果示意圖 ....15 圖2.6 典型的壓電石英晶體示意圖 …16 圖2.7 螢光產生之能譜示意圖 …20 圖2.8 各種生物感測方法樣本準備方式及產品可攜式程度關係圖..21 圖2.9 三維聚集電極示意圖。中間為正極,兩邊為負極,因此DNA會被聚集至中間.. …23 圖2.10 Confocal Laser Induced Fluorescence System架設示意圖 …23 圖2.11 微晶片示意圖。激發光源經由第一個透鏡聚焦後激發螢光由第二個透鏡收光 …24 圖2.12 偵測原理。(a)無內層阻光孔徑層(b)具有內層阻光孔徑層(Al+Si3N4) …25 圖2.13 生醫scanner系統 …25 圖2.14 光感測器、光纖及流道相關位置示意圖 …26 圖2.15 實驗組裝示意圖。(a)以藍光LED將光耦合入光纖中以激發流道中的螢光物質。發射的光子由APD偵測紀錄於電腦中。(b)詳細的激發偵測區放大圖 …27 圖2.16 生化IC晶片組(具有一微型pump晶片) …28 圖2.17 (a)Connector chip(b)Reservoir chip (c)Micropump chip (d)Reactor chip(e)Reactor chip for sensing (f)Photosensor chip… …28 圖2.18 (a)整合之平面微流體偵測系統示意圖(b)整合具光學系統之微流道示意圖(c)真實完成系統之SEM圖 …29 圖2.19 可拋棄式整合微流體光學系統之製程流程圖 …29 圖2.20 晶片整合示意圖(左)及量測系統架設圖(右)…………...……30 圖2.21 左圖為作者所製作之晶片示意圖,右圖為對Li-Cor IR800螢光染劑之檢測結果………………...…………………………31 圖2.22 作者所提出三種檢測系統示意圖……………...…………..…31 圖2.23 左圖為Evan Thrush所製作之PIN二極體,結構由40層以上之磊晶結構組成。右圖為感測器與VCSEL之組合結構圖...33 圖2.24 作者在感測器及雷射中間以金屬作為遮蔽雷射所產生雜訊之示意圖…………………………………………….…………..33 圖2.25 光學模擬軟體比較此兩種設計之優缺點…….………………33 圖2.26 (a)左圖:產生於兩不同折射係數介面之漸逝波示意圖。其中折射係數n1>n2,激發光以產生全反射角之角度入射,並可激發靠近介面之螢光分子。(b)右圖:以不同角度入射的雷射光可以穿透介面不同深度,因而激發不同深度之螢光分子 …34 圖2.27 光電倍增管基本原理示意圖 …39 圖2.28 APD雪崩放大示意圖,圖中表示所產生的載子在APD內部如何放大 …40 圖3.1 APD結構示意圖.. …47 圖3.2 崩潰過程的示意圖,表示所產生的載子在APD內部如何放大 …48 圖3.3 常用之半導體材料之吸收係數及穿透深度對波長之關係…..50 圖3.4 因強大電場使得界面提早崩潰示意圖 …54 圖3.5 由於淺界面所形成電荷聚集效應 …55 圖3.6 加深佈值深度,減少電荷累積效應 …55 圖3.7 高濃度佈值區邊緣加入guard-ring結構,即佈值一較低濃度之界面,減少電荷累積 …55 圖3.8 使用beveled-edge結構 …56 圖3.9 reach-through結構特性示意圖 …57 圖3.10 Geiger mode元件示意圖(左),右圖為電場示意圖 …58 圖3.11 不同光感測器量子效率比較圖 …58 圖3.12 雜質摻雜濃度對崩潰電壓曲線圖 …63 圖3.13 空乏區寬度對輸出光電流關係圖 …63 圖3.14 電場強度對漂移速度相關曲線圖 …64 圖3.15 電場強度的倒數對離子化係數的關係曲線 …64 圖3.16 離子佈植後再經回火的離子濃度分布曲線圖 …65 圖3.17 (a)為在低阻值之矽基材上長一層磊晶層;(b)為定義guard ring區域;(c)長氧化層;(d)離子佈值主動感測區;(e)沉積金屬層;(f)元件完整結構圖;(g)各層之電場分布圖;(h)為各層之電位能分布圖…………………………………………..67 圖3.18 低阻值0.25 ohm/cm2磊晶層之I-V特性曲線圖…..…68 圖3.19 高阻值5890 ohm/ cm2磊晶層之I-V特性曲線圖……..68 圖3.20 medici所模擬阻值對於崩潰電壓及暗電流關係曲線圖…….68 圖3.21 APD製程流程圖 …70 圖3.22 第一代設計光罩圖。綠色為感光區,藍色為電極 …71 圖3.23 第二代5X5光罩設計示意圖 …71 圖3.24 APD操作模式示意圖 ...72 圖3.25 第三代設計圖案之示意圖……………………………………73 圖3.26 最佳增益與最大S/N值之關係………………………………75 圖 4.1 海星皮膚上之微透鏡結構將光聚焦至神經細胞之示意圖….78 圖4.2 平行檢測蛋白質微陣列螢光訊號之微型檢測系統示意圖…78 圖4.3 NA定義示意圖………………………………………..…..…79 圖4.4 不同數值孔徑與收光效益示意圖…………………….…..79 圖4.5 整合微透鏡之晶片製程示意圖………………………….80 圖4.6 透鏡整合APD應用於此晶片設計之3D示意圖………80 圖4.7 UV傾斜曝光示意圖 ....83 圖4.8 空氣介質中之光路示意圖 ...83 圖4.9 甘油介質中之光路示意圖 …84 圖4.10 於空氣與甘油不同入射介質中,曝光角(q3)與光入射角(q1)之關係 ...84 圖4.11 三維dove prism之製程步驟 ...86 圖4.12 V-shape 結構之製作觀念 ...87 圖4.13 (a)-(d)Fabrication process of the SU-8 V shape structures resulting from the UV reflections from the silicon substrate surface and (e)-(h)inclined mirror structures…………….…...88 圖4.14 APD上整合透鏡及鏡面之製程示意圖………..………….89 圖4.15 所完成晶片之3D結構示意圖……………………………90 圖4.16 分光鏡示意圖 ...91 圖4.17 分光鏡及反射鏡組示意圖 ...91 圖4.18 兩種不同dove prism之應用示意圖……………………...93 圖4.19 三維灰階光罩與凹、凸結構之製程 ...96 圖4.20 三維灰階光罩與所定義圖案之關係 ...97 圖4.21 曲面結構示意圖 ...97 圖4.22 AZ 4620光阻在熔融前高度 與熔融後高度 之高度關係 ..101 圖4.23 h (a function of x)、 x (x position)、 s (sag)和 R (curvature radius )的關係示意圖 ..101 圖4.24 sag 高度 與穿透率(Transmittance) 之關係 ..102 圖4.25 估計光罩與所定義SU8圖案之關係若玻璃基材厚度為0.635 mm,則曝光後之定義範圍約增加50% ..103 圖4.26 平凸透鏡示意圖 ..104 圖4.27 平凹透鏡示意圖 ..104 圖5.1 第一代製程結果。感測器面積為2mm,黑色線為未照光時的訊號,紅色線為照光3mWatt後的訊號。由圖中可觀察出在儀器所能提供最大電壓之範圍100伏時並未達崩潰狀態 ..106 圖5.2 供給3微瓦特的光,APD sensor的逆向輸出電流特性曲線圖,感測區的直徑為500µm ..107 圖5.3 5X5 Array SEM圖 ..109 圖5.4編號2號(Diameter:20µm)之晶片所量測之I-V曲線圖,其中磊晶層之阻值為5890ohm-cm (diameter:20mm),所照射之光強度約3mW。且100V放大後之暗電流為37nA,增益值在100V時可達86倍 ..109 圖5.5編號1號之晶片所量測之光電流曲線圖,其中磊晶層之阻值為0.25ohm-cm,所照射之光強度約3mW。增益值在30V時可達865倍 ..110 圖5.6 理想之逆向電壓與端電容曲線圖。左圖中區域1表示P+區尚未完全空乏,因此當載子若入此區時移動速度會變慢,而影響元件的響應速度。若元件操作速度要快,建議操作於區域2中 ..110 圖5.7 端電容特性曲線圖。為了使元件具有較快速的響應,建議操作於曲線較平坦之區域(足夠厚之空乏層) ..111 圖5.8 5X5 Array 之OM圖 ..111 圖5.9 (a)以陶瓷基板封裝完成之晶片。(b)此高阻值之APD晶片用於量測Cy5之螢光訊號,約可檢測至50ng/ml。與Axon scanner相比較,顯示此晶片仍有一段努力之空間……….111 圖 5.10 (a)3X3 APD陣列OM圖。(b) 4X4 APD陣列OM圖。(c)高阻值之I-V特性曲線圖。(d)低阻值之I-V特性曲線圖…………………………………………………………….114 圖5.11 同一陣列群組中7顆APD感測器之I-V特性圖,其中(a)R=5890 ohm/cm2,(b) R=0.25 ohm/cm2…………………115 圖5.12 當光源位置偏移時對APD(R:5890 ohm/cm2)之I-V特性之影響(a)左移(b)右移…………………………………………116 圖5.13 當光源位置偏移時對APD(R:0.25ohm/cm2)之I-V特性之影響(a)左移(b)右移……………………………………….117 圖5.14 80μm之APD,其透鏡具NA=0.2之I-V特性差異圖。加透鏡前之sensitivity約16.55A/W,加透鏡後之sensitivity約20.85A/W,約增加25%……………………………………..118 圖5.15 所製作之微透鏡參數經由ZEMAX軟體模擬估算後,其波前誤差約0.1371l…………………………………………119 圖5.16 所製作之微透鏡參數經由ZEMAX軟體模擬估算後之干涉圖譜……………………………………………….……………119 圖5.17 所製作之微透鏡參數經由ZEMAX軟體模擬估算後之point spread function(PSF)值……………………….……………119 圖5.18可提供30-90V之APD電源驅動電路…………………….….121 圖5.19 (a)為一般市售電源供應器於AC coupling模式下所量測之雜訊圖,最大約有45mV。(b)圖為所製作之APD逆向電壓驅動電路之雜訊圖,最大約4mV。(c)為所製作之DC-DC converter電路圖…………………………………………………….…122 圖5.20 結合APD電源驅動電路及電流感測之組合電路圖….123 圖5.21 (a)為製作於玻璃基材上之微透鏡陣列,經由背後打光形成聚焦後的光點。(b)-(c)分別為直徑5mm及30mm微透鏡之SEM圖。圖(d)為所製作不同直徑之微透鏡,以同一型號之SU-8所形成不同NA值之結果……………………………124 圖5.22 (a)為多重親疏水介面微透鏡之示意圖,(b)及(c)分別為加熱前及加熱至Tg點後所形成不同曲率透鏡之OM圖,及surface profile掃描之結果,由此結果可觀察到NA值可增加5倍..125 圖5.23 所示分別為SU-8形成透鏡形貌後,經(a)軟烤固化、(b)曝光定型及(c)PEB顯影後之OM圖………………………..126 圖5.24 (a)為成功結合APD元件及lens之OM圖,(b)為surface profile掃描圖6.2-4a箭頭所指lens之profile,平均透鏡之profile小於2.8%。(c)為7顆所成之APD及lens圖……………….126 圖5.25 利用SU8光阻製作不同傾斜角之鏡面,傾斜底角分別為81.8°, 68.9°, 62.2°, 51.5°, 45°, 39.3°, 31.3°和19.2° ..129 圖5.26 結構傾斜角度及曝光劑量之關係圖……..……….……130 圖5.27 由AFM所量測不同傾斜角之表面粗操度……….……..130 圖5.28 (a) V-grooves (b) 微型filter (c)光罩與甘油間有空氣間隙存在時,造成光路徑平移所產生之結構(d)經由五次不同方向曝光所形成完美的dove-prism 結構………………………..131 圖5.29 未加濾光鏡斜曝所產生之圖案。………………………..132 圖5.30 加濾光鏡所產生之圖案………………………………….132 圖5.31 加濾光鏡所產生之圖案………………………………….132 圖5.32 所完成螢光檢測晶片製程其各部分及整體結構之SEM圖.133 圖5.33 三維灰階光罩與所完成凹槽透鏡之SEM 圖…………….135 圖5.34 微型曲面流道實驗結果之SEM圖(Thick=90μm)………136 表目錄 表2.1 生物感測器訊號傳輸元件之換能器 …18 表2.2 數種生物感測器方法之偵測極限比較表………………...……19 表2.3 三種螢光檢測機制優缺點比較表……………………………..32 表2.4 常見光學檢測方法之檢測極限表…………………………..…36 表2.5 常見之光偵測器之增益大小與響應速度比較圖 …37 表2.6 PIN與APD感光二極體特性比較表 …41 表2.7 PMT與APD感光特性比較表 …42 表2.8 Si, Ge, 和InGaAs雪崩感光二極體操作參數 ...43 表2.9 Si, Ge, 和InGaAs雪崩感光二極體的k, X和F值 …43 表3.1 估算光感測器偵測極限參數……………………………….51 表3.2 各偵測器最小可偵測之光子數目…………………………..52 表5.1 APD sensor size v.s. dark current曲線圖……………….107 表5.2 直徑500µm sensor之逆向電壓與暗電流(dark)、光電流(photo current)關係表……………………………………….107 表5.3 各傾斜角之表面粗糙度(AFM量測)…………………….131

    [1] 林世章, 微陣列壓印晶片之研發, 國立清華大學博士論文, 2003.
    [2] T. V. Dinh, “Development of a DNA biochip: principle and applications,” Sensors and Actuators B, 51, pp. 52-59, 1998.
    [3] P. Rizo, Bio-MEMS at LETI: Detection, CEA –LETI: Laboratory of reading system for Biology, pp. 1-19, 2003.
    [4] G. Bardeletti, F. Sechaud and P. R. Coulet, “Amperometic enzyme electrodes for substrate and enzyme activity determinations,” Biosensor Principles and Applications (Eds. L. J. Blum and P. R. Coulet), Marcel Dekker Inc., New York, pp. 7-45, 1991.
    [5] R. L. Solsky, “Ion-selective electrodes,” Anal. Chem., 60, pp. 106-113, 1988.
    [6] O. S. Wolfbeis, Fiber-optic sensors for chemical parameters of interest in biotechnology, Biosensors International Workshop. GBF Monographs, 10, pp. 197-206, 1987.
    [7] J. Homola, “Present and Future of Surface Plasmon Resonance Biosensors,” Analytical and Bioanalytical Chemistry, 377, pp. 528-539, 2003.
    [8] S. Chang, C. W. Lin, S. M. Lin, “Design and Fabrication of Array Format SPR Chips in Microstructure Monolayers Detection,” 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology, pp. 4-6, 2002.
    [9] G. A. Sauerbrey, “Use of a quartz vibrator from weight thin films on a microbalance,” Z. Physik, 155, pp. 206-210, 1959.
    [10] C. D. Garcia, C. S. Henry, “Direct Determination of Carbohydrates, Amino Acids, and Antibiotics by Microchip Electrophoresis with Pulsed Amperometric Detection,” Anal. Chem., 75(18), pp. 4778-4783, 2003.

    [11] C. C. Wu, R. G. Wu, J. G. Huang, Y. C. Lin, H. C. Chang, “Three-Electrode Electrochemical Detector and Platinum Film Decoupler Integrated with a Capillary Electrophoresis Microchip for Amperometric Detection,” Anal. Chem., 75(4), pp. 947-952, 2003.
    [12] B. F. Liu, M. Ozaki, Y. Utsumi, T. Hattori, S. Terabe, “Chemiluminescence Detection for a Microchip Capillary Electrophoresis System Fabricated in Poly(dimethylsiloxane),” Anal. Chem., 75(1), pp. 36-41, 2003.
    [13] V. Namasivayam, R. Lin, B. Johnson, S. Brahmasandra, Z. Razzacki, D. T. Burke, M. A. Burns, “Advances in on-chip photodetection for applications in miniaturized genetic analysis systems,” J. Micromech. Microeng., 14, pp. 81-90, 2004.
    [14] T. Nakagama, T. Meada, K. Uchiyama, T. Hobo, “Monitoring nano-flow rate of water by atomic emission detection using helium radio-frequency plasma,” Analyst, 128, pp. 543-546, 2003.
    [15] 張煥宗, 曾韋龍, “光學偵測法於生物感測器之應用,” 光訊89期, pp. 1-5, 2001.
    [16] 財團法人生物技術開發中心, 生物技術的發展與應用, 九州圖書公司, 民國86年.
    [17] 張煥宗, 謝明穆, 曾韋龍, “雷射激發螢光偵測器於生物分析中之應用,” 光訊76期, pp. 20-23, 1999.
    [18] 蔡逸勤, 蛋白質微陣列晶片之壓印機構設計與其影像檢測, 國立清華大學碩士論文, 2002.
    [19] 王應瓊, 儀器分析, 中央圖書出版社出版, 1994.
    [20] T. H. Wang, P. K. Wong, and C. M. Ho, “Electrical Molecular Focusing for Laser Induced Fluorescence Based Single DNA Detection,” IEEE MEMS’ 02, Las Vegas, Nevada, USA, Jan. 20-24, pp. 15-18, 2002.
    [21] J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. Rooij, and R. Dandliker, “Microlens systems for fluorescence detection in chemical Microsystems,” Optical Engineering, Volume 40, Issue 5, pp. 814-821, 2001.
    [22] GenePix 4000B Micro Array Scanner, http://www.axon.com/l.
    [23] M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, ”An Integrated Fluorescence Detection System in Poly(dimethylsiloxane) for Microfluidic Applications,” Anal. Chem., 73, pp. 4491-4498, 2001.
    [24] K. Ikuta, S. Maruo, and S. Kojima, “New Micro Stereo Lithography for Freely Movable 3D Micro Structure,” Journal of the IEEE’99, pp. 290-295, 2000.
    [25] J. Seo and L. P. Lee, “Integrated Microfludic Optical Systems(iMOS) with LED,” Proc. of the mTAS’02 Symposium, Nara, Japan, Nov. 3-7, pp. 284-286, 2002.
    [26] T. Kamei, B. M. Paegel, J. R. Scherer, A. M. Skelley, R. A. Street, R. A. Mathies, “Integrated Hydrogenated Amorphous Si Photodiode Detector for Microfluidic Bioanalytical Devices,“ Analytical Chemistry, 75 (20), pp. 5300-5305, 2003.
    [27] E. P. Thrush, O. Levi, K. Wang, J. S. Harris, and S. J. Smith, “High-throughput integration of optoelectronics devices for biochip fluorescent detection,” Anal. Chem., 76, pp. 3285-3298, 2004.
    [28] M. Oheim and W. Stühmer, “Multiparameter Evanescent-Wave Imaging in Biological Fluorescence Microscopy,” IEEE Journal Of Quantum Electronics, Vol. 38, Issue 2, pp. 142-148, 2002.
    [29] Uppsala, Real-time vitamin analysis (biosensor technology), Sweden BIACORE Technical notes, pp. 1-3, 2001.
    [30] B. P. Nelson, T. E. Grimsrud, M. R. Liles, R. M. Goodman, and R. M. Corn, “Surface Plasmon Resonance Imaging Measurements of DNA and RNA Hybridization Adsorption onto DNA Microarrays,” Anal. Chem., 73, pp. 1-7, 2001.
    [31] J. R. Epstein, M. Lee, D. R. Walt, “High-Density Fiber-Optic Genosensor Microsphere Array Capable of Zeptomole Detection Limits,” Anal. Chem., 74(8), pp. 1836-1840, 2002.
    [32] T. B. Tims, D. V. Lim, “Confirmation of viable E. coli O157:H7 by enrichment and PCR after rapid biosensor detection,” Journal of Microbiological Methods 55 (1), pp. 141-147, 2003.
    [33] S. F. Cheng, L. K. Chau, “Colloidal Gold-Modified Optical Fiber for Chemical and Biochemical Sensing,” Anal. Chem., 75(1), pp. 16-21, 2003.
    [34] S. Camou, J. P. Gouy, H. Fujita and T. Fujii, "Design of a 2-D optical lens on a PDMS micro-chip to improve fluorescence spectroscopy using integrated optical fibers," Proceedings of Optical MEMS 2001, Okinawa (Japan), pp. 133-134, 2001.
    [35] E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, C. Otto, “Integrated optical microcavities for enhanced evanescent-wave spectroscopy,” Optics Letters, Vol. 27, Issue 17, pp. 1504-1506, 2002.
    [36] T. Kamei, B. M. Paegel, J. R. Scherer, A. M. Skelley, R. A. Street, and R. A. Mathies, “Integrated Hydrogenated Amorphous Si Photodiode Detector for Microfluidic Bioanalytical Devices,” Anal. Chem., 75, pp. 5300-5305, 2003.
    [37] G. T. A. Kovacs, Micromachined Transducers Sourcebook, The McGraw-Hill Companies, Inc., 1998.
    [38] HAMAMATSU data sheet, Photomultiplier Tubes, Apr. 2000.
    [39] B. Dolgoshein, “The silicon photomultiplier and its possible application,” Transparency of 3rd BEAUNE conference and its proceeding, Geneve, pp. 12-16, 2002.

    [40] B. Dolgoshein, “An Advanced study of Silicon Photomultiplier,” ICFA Instrumentation Bulletin, pp. 1-14, 2002.
    [41] HAMAMATSU data sheet, Characteristics and use of Si APD (Avalanche Photodiode), Technical information SD-28, Jul. 2001.
    [42] H. Dautet, P. Deschamps, B. Dion, A. D. MacGregor, D. MacSween, R. J. McIntyre, C. Trottier, P. P. Webb, “Photon-counting techniques with silicon avalanche photodiodes,” Applied Optics, 32 (21), pp. 3894-3900, 1993.
    [43] P. P. Webb, R. J. Mclntyre, and J. Conradi, “Properties of Avalanche Photodiodes,” RCA Review, Vol. 35, pp. 1-55, June 1974.
    [44] P. Buzhan, B. Dolgoshein_, A. Ilyin, V. Kantserov, V. Kaplin, A. Karakash, A. Pleshko, E. Popova, S. Smirnov, Yu. Volkov Moscow Engineering and Physics Institute, Moscow, Russia L. Filatov and S. Klemin Pulsar" Enterprise, Moscow, Russia F. Kayumov, “An advanced study of silicon photomultiplier-Avalanche Photodiodes: A User’s Guide”, EG&G Optoelectronics Canada, pp. 1-6, 2000.
    [45] R. J. Mclntyre, “Multiplication Noise in Uniform Avalanche Diodes,” IEEE Trans. Electron Devices, ED-13, pp. 164-168, 1966.
    [46] S. D. Cova, A. L. Lacaita, F. Zappa, P. G. Lovati, “Avalanche photodiodes for near-infrared photon-counting,” SPIE Proc.-The International Society for Optical Engineering, Vol. 2388, pp. 56-66, 1995.
    [47] S. Vasile, P. Gothoskar, R. Farrell and D. Sdrulla, “Photon detection with high gain avalanche Photodiodes arrays,” IEEE Transactions On Nuclear Science, Vol. 45, No. 3, pp. 720-722, 1998.
    [48] C. W. Thiel, An Introduction to Semiconductor Radiation Detectors, Physics Department Montana State University Bozeman Montana, Handout, 2002.
    [49] O. Tabata, K. Terasoma, N. Agawa, and K. Yamamoto, “Moving Mask LIGA (M2LIGA) Process for Control of Side Wall Inclination,” Journal of the IEEE, pp. 252-256, 1999.
    [50] J. G. E. Gardeniers, J. W. Berenschot, M. J. de Boer, etc., “Silicon Micromachined Hollow Microneedles for Transdermal Liquid Transfer,” Proc. IEEE Int. Conf. on MEMS’02, Las Vegas, USA, Jan. 20-24, pp. 141-144, 2002.
    [51] A. Armand, A. D. Stroock, D. K. Stephan and M. George, “Patterning Flows Using Grooved Surfaces: Application to Microfluidics,” Proc. of the mTAS’02 Symposium, Nara, Japan, Nov. 3-7, pp. 620-622, 2002.
    [52] M. O. Freeman, H. F. Shin, H. R. Chang, J. K. Wang, C. L. Chen, R. N. Chuang, M. W. Chang, “High Efficiency HOEs for Holographic DVD Pickup Heads,” IEEE Transactions on Magnetics, Vol. 34, NO. 2, pp. 456-458, 1998.
    [53] C. Beuret, G. A. Racine, J. Gobet, R. Luthier, and N. F. Rooij, “Microfabrication of 3D Multidirectional Inclined Structures by UV Lithography and Electroplating,” Proc. of the MEMS’94, pp.81-85, 1994.
    [54] H. Sato, T. Kakinuma, J. S. Go and S. Shoji, “A Novel Fabrication of In-Channel 3-D Micromesh Structure Using Maskless Multi-Angle Exposure and Its Microfilter Application”, Proc. of the MEMS’03, Kyoto, Japan, Jan. 19-23, pp. 223-226, 2003.
    [55] M. Han, W. Lee, S. K. Lee, and S. S. Lee, “Microfabrication of 3D Oblique Structures by Inclined UV Lithography,” Proc. of the mTAS’02 Symposium, Nara, Japan, Nov. 3-7, pp.106-108, 2002.
    [56] Y. K. Yoon, J. H. Park, F. Cros and M. G. Allen, “Integrated Vertical Screen Microfilter System Using Inclined SU-8 Structures,” Proc. of the MEMS’03, Kyoto, Japan, January 19-23, pp. 227-230, 2003
    [57] K. Y. Hung, and F. G. Tseng, “A Novel Fabrication Technology for Smooth 3D Inclined Polymer Microstructures with Adjustable Angles,” IEEE transducers’03, Boston, USA, Jun. 8-12, pp. 821-824, 2003.
    [58] W. Daschner, R. D. Stein, P. Long, C. Wu, S. H. Lee, “One-step lithography for mass production of multilevel diffractive optical elements using high energy beam sensitive (HEBS) gray-level mask,” Proc. SPIE: Diffractive and Holographic Optics Technology III, Vol. 2689, pp. 153–155, 1996.
    [59] C. M. Waits, A. Modafe and R. Ghodssi, “Investigation of gray-scale technology for large area 3D silicon MEMS structures,” J. Micromech. Microeng., 13, pp. 170-177, 2003.
    [60] 施敏, Semiconductor Devices Physics and Technology, John Wiley & Sons, 1985.
    [61] S. E. MILLER, E. A. J. MARCATILI, T. G. LI, "Research Toward Optical-Fiber Transmission Systems," Proceedings Of the IEEE, Bell Laboratories, Holmdel, NJ, 1973.
    [62] R. T. Gill, E. Katsoulakis, W. Schmitt, G. T. Oldenburg, J. Misra, and G. Stephanopoulos, ”Genome-Wide Dynamic Transcriptional Profiling of the Light-to-Dark Transition in Synechocystis sp. Strain PCC 6803,“ Journal of Bacteriology, Vol. 184, No. 13, pp. 3671-3681, 2002.
    [63] H. Spieler, Introduction to Radiation Detectors and Electronics, Handout, 1998.
    [64] B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-Mode Avalanche Photodiodes for Three-Dimensional Imaging,” Lincoln Laboratory Journal, Vol. 13, Number 2, pp. 335-350, 2002.
    [65] M. Fukuda, Optical Semiconductor Devices, John Wiley & Sons, 1998.
    [66] S. d. Moon, N. Lee, S. Kang, “Fabrication of a microlens array using micro-compression molding with an electroformed mold insert,” Journal Of Micromechanical and Microengineering, Vol. 13, pp. 98-103, 2003.
    [67] D. M. Hartmann, O. Kibar, and S. C. Esener, “Characterization of a polymer microlens fabricated by use of the hydrophobic effect,” Optics Letters, Vol. 25, No. 13, pp. 380-383, 2000.
    [68] W. R. Cox, C. Guan, D. J. Hayes and D. B. Wallace, “Microjet Printing of Micro-Optical Interconnects,” Int. J. of Microcircuits and Elect. Packing, Vol. 23, No. 3, pp. 346-351, 2000.
    [69] J. Aizenberg, A. Tkachenko, S. Weiner, L. Addadi, and G. Hendler, “Calcitic microlenses as part of the photoreceptor system in brittlestars,” letters to Nature, Vol. 412, pp. 819-822, 2001.
    [70] M. H. Wu, K. E. Paul, and G. M. Whitesides, “Patterning flood illumination with microlens arrays,” APPLIED OPTICS, Vol. 41, No. 13, pp. 2575-2585, 2002.
    [71] J. L. Wilbur, A. Kumar, H. A. Biebuyck, E. Kim, G. M. Whitesides, "Microcontact printing of self-assembled monolayers: Applications in microfabrication," Nanotechnology, 7 (4), pp. 452-457, 1996.
    [72] K. H. Jeong, G. L. Liu, N. Chronis, and L. P. Lee, “Tunable Microdoublet Lens Array,” IEEE MEMS, pp. 37-40, 2004.
    [73] K. H. Jeong and L. P. Lee, “A new Method of Increasing Numerical Aperture of Microlens for Biophotonic MEMS,” IEEE-EMBS, pp. 380-383, 2002.
    [74] Y. J. Chuang., F. G. Tseng., W. K. Lin, “Reduction of Diffraction Effect of UV Exposure on SU-8 Negative resist by Air Gap Elimination,” Microsystem Technologies 8, pp. 308-313, 2002.
    [75] ORIEL Instruments, Transmittance and focal length calculations, Application Notes, pp. 15-22, 2000.
    [76] J. Williams, Application Note 92, Linear Technology Corporation, 2001.
    [77] 古燕華, 蛋白質微陣列反應晶片材質與自我組裝單層分子之表面處理研究, 國立清華大學碩士論文, 2002.
    [78] 黃朝裕, “壓印式蛋白質微陣列晶片之印台研發,” 國立清華大學碩士論文, 2001.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE