簡易檢索 / 詳目顯示

研究生: 曾于碩
Tseng, Yu-Shuo
論文名稱: 高氫含量對鋯四合金高週疲勞性質之影響
Effect of High Hydrogen Content on High Cycle Fatigue Properties of Zircaly-4
指導教授: 黃嘉宏
Huang, Jia-Hong
喻冀平
Yu, Ge-Ping
口試委員: 黃俊源
Huang, Jiunn-Yuan
董曉明
Tung, Hsiao-Ming
學位類別: 碩士
Master
系所名稱: 原子科學院 - 核子工程與科學研究所
Nuclear Engineering and Science
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 69
中文關鍵詞: 金屬材料核能材料機械性質
外文關鍵詞: hydride
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了確保鋯-4合金護套在乾式貯存的運送與建置中的完整性,本研究以氫氣熱循環法將鋯-4合金充氫至目標700 ppm濃度,並使用MTS810系統在室溫與300 °C下做高週疲勞試驗。本研究發現,含氫試片的高週疲勞性質優於原鋯-4合金,在室溫與300 °C情況下皆是如此,此結果成因為氫化鋯析出,並在疲勞裂縫成長中扮演裂縫分隔與差排滑移阻擋的角色,此現象可以從氫化鋯形貌、EBSD方向圖、SEM斷面圖來解釋。在300 °C時可觀察到氫輔助局部塑性的現象。在300 °C原鋯-4合金的疲勞實驗中,發現裂縫起始於試片兩側並成長的現象,此現象可能和降伏點的出現與較大的塑性區有關。


    To ensure the integrity of Zircaloy-4 claddings in the dry storage casks during transportation and installation, Zircaloy-4 plate specimens were gaseously hydrided up to 700 ppm and then fatigue tested with a MTS810 system at room temperature and 300 °C. The hydrided specimens presents better fatigue properties at both temperatures. This was attributed to the hydride platelets playing the roles of crack divider and slip barrier, which was explained by the hydride morphology, EBSD patterns, and SEM fractography. At 300 °C, the hydrogen enhanced localized plasticity also can be observed. The fatigue crack initiation on both side of the as-received specimen at 300 °C was resulted from the existence of yield point and large plastic zone.

    致謝 i 摘要 ii Abstract ii List of Figures vi List of Tables ix Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2.1 Properties of Zry-4 4 2.1.1 Crystal Structure of Zirconium 4 2.1.2 Slip System of α-Zr 4 2.1.3 Mechanical properties of Zry-4 Sheet 4 2.2 Fatigue Failure 8 2.2.1 Formation of the Fatigue Crack 8 2.2.2 Factors to Cause Fatigue Failure 8 2.2.3 The Parameters of Cyclic Stress 9 2.2.4 High Cycle Fatigue and S-N Curve 9 2.3 Formation of hydride in reactor environment 13 2.4 Influence of hydride on the zirconium alloys 14 2.4.1 Characteristics of zirconium hydrides 14 2.4.2 Mechanical Properties of Zirconium Alloys Influenced by Hydride Formation 14 Chapter 3 Experimental Details 17 3.1 Hydrogen Charging Process and Specimen Preparation 18 3.2 Characteristic of Composition and Structure 19 3.2.1 Identification of Hydride Phase 19 3.2.2 Hydrogen Content and Hydride Morphology 19 3.2.3 Texture and Metallography 19 3.3 Surface Roughness 19 3.4 Fatigue Test 20 3.5 Fractography 20 Chapter 4 Results 21 4.1 Structure 21 4.2 Hydrogen Concentration 29 4.3 Fatigue Properties 29 4.3.1 Stress-Cycle Curves at Room Temperature 29 4.3.2 Stress-Cycle results at 300 C 29 4.4 Hydride Morphology and crack path 33 4.5 Fractography 40 4.5.1 Fracture Surface at Room Temperature 40 4.5.2 Fracture Surface at 300 C 48 Chapter 5 Discussion 57 5.1 The structure of hydrides in Zry-4 57 5.2 Effect of Hydrogen Charging on Fatigue Behavior at Room Temperature 57 5.2.1 Effect of Hydride Morphology 57 5.2.2 Effect of Slip Barrier 60 5.2.3 Crack Closure 60 5.3 Effect of Hydrogen Charging on Fatigue Behavior at 300 C 61 5.3.1 Hydrogen Enhanced Localized Plasticity 61 5.3.2 Effect of Yield Point 62 Chapter 6 Conclusions 63 References 64

    J.J. Keams, Terminal solubility and partitioning of hydrogen in the alpha phase of zirconium, Zircaloy-2 and Zircaloy-4, J. Nucl. Mater, 22 (1967) 292-303.
    J.H. Huang, S. P. Huang, Effect of hydrogen contents on the mechanical properties of Zircaloy-4, J. Nucl. Mater. 208 (1994) 166-179.
    J.B. Bai, C. Prioul, S. Lansiart, D. François, Brittle fracture induced by hydrides in zircaloy-4, Scri. Metall. et. Mater. 25 (1991) 2559-2563.
    J.B. Bai, C. Prioul, D. François, Hydride embrittlement in ZIRCALOY-4 plate: Part I. Influence of microstructure on the hydride embrittlement in ZIRCALOY-4 at 20 °C and 350 °C, Metall. Mater. Trans. A, vol. 25 (1994) 1185-1197.
    J.B. Bai, N. Ji, D. Gilbon, C. Prioul, D. François, Hydride embrittlement in ZIRCALOY-4 plate: Part II. interaction between the tensile stress and the hydride morphology, Metall. Mater. Trans. A , Vol. 25 (1994) 1199-1208.
    H.H. Hsu, L.W. Tsay, Effect of hydride orientation on fracture toughness of Zircaloy-4 cladding, J. Nucl. Mater. 408 (2011) 67-72.
    Lin Xiao, Haicheng Gu, Low cycle fatigue properties and microscopic deformation structure of Zircaloy-4 in recrystallized and stress-relieved conditions, J. Nucl. Mater. 265 (1999) 213-217.
    Zhou Jun, Li Zhongkui, Zhang Jianjun, Tian Feng, Effect of Hydrogen Content on Low-Cycle Fatigue Behavior of Zr-Sn-Nb Alloy, Rare Metal Mater. Eng. 41(9) (2012) 1531-1534.
    J. Li, H. Murakami, Y. Liu, P.E.A. Gomez, M. Gudipati, and M. Greiner. Peak Cladding Temperature in a Spent Fuel Storage or Transportation Cask, Proceedings of the 15th Int. Symposium on the Packaging and Transportation of Radioactive Materials, (2007).
    A. Machiels and J. Rashid, Spent Fuel Transportation Applications-Assessment of Cladding Performance: A Synthesis Report, EPRI 1015048, Palo Alto, 2007.
    ASM, Metal Handbook, Vol. 2, ninth ed., ASM International, Materials Park, 1998.
    D.R. Lide, CRC Handbook of Chemistry and Physics, 90th ed., CRC Press, Boca Raton, FL, (2010) 12-204.
    C.L. Whitmarsh, Review of Zircaloy-2 and Zircaloy-4 properties relevant to NS Savannah reactor design. No. ORNL-3281. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States), 1962.
    International Atomic Energy Agency, Waterside corrosion of zirconium alloys in nuclear power plants, IAEA-TECDOC-996 (1998) 12-18.
    V. Quach, D.O. Northwood, Influence of the phosphorus impurity content on the microstructure of Zircaloy-4 air cooled from the high temperature beta phase region, Metallography, 17 (1984) 191-201.
    R.A. Holt, The beta to alpha phase transformation in Zircaloy-4, J. Nucl. Mater, 35 (1970) 322-334.
    Lin Xiao, Haicheng Gu, Dislocation structures in zirconium and zircaloy-4 fatigued at different temperatures, Metall and Mat Trans A 28 (1997) 1021-1033.
    R.E. Reed-Hill, J.P. Hirth, H.C. Rogers, Deformation Twinning; Proceedings, Vol. 25, Gordeon and Breach Science Publishers, New York and London (1964) 295.
    Erich Tenckhoff, Review of Deformation Mechanisms, Texture, and Mechanical Anisotropy in Zirconium and Zirconium Base Alloys, J. ASTM International, 2 (2005) 25-50.
    E. Tenckhoff, Verformungsmechanismen Textur und Anisotropie in Zirkonium und Zircaloy, Materialkundich-Technische Reihe 5, Gebru ̈der Borntra ̈ger Verlag, Berlin-Stuttgart, 1980.
    M. Grange, J. Besson, E. Andrieu, Anisotropic Behavior and Rupture of Hydrided ZIRCALOY-4 Sheets, Metall. Mater. Trans. A 31 (3) (2000) 679–690.
    N. Mozzani et al., Mechanical behavior of recrystallized Zircaloy-4 under monotonic loading at room temperature: Tests and simplified anisotropic modeling, J. Nucl. Mater. 447 (2014) 94-106.
    H.M. Tung, T.C. Chen, C.C. Tseng, Effects of hydrogen contents on the mechanical properties of Zircaloy-4 sheets, Mater. Sci. Eng. A. 659 (2016) 172-178.
    Wood, W. A., Formation of fatigue cracks, Philo. Mag. 3.31 (1958) 692-699.
    Laird, Campbell, The influence of metallurgical structure on the mechanisms of fatigue crack propagation, Fatigue crack propagation ASTM International, 1967.
    G.E. Dieter, Mechanical Metallurgy, SI Metric ed., 1998.
    L.E. Steele, Radiation Embrittlement of Nuclear Reactor Pressure Vessel Steels: An International Review, 4th volume, (1993) 30.
    W.E. Berry, D.A. Vaughan and E.L. White, Hydrogen Pickup During Aqueous Corrosion Of Zirconium Alloys, Corrosion, 17 (1961) 109-117.
    National academies of Sciences, Engineering, and Medicine, Lessons Learned from the Fukushima Nuclear Accident for Improving Safety and Security of U.S. Nuclear Plants: Phase 2, Washington, DC: The National Academies Press, (2016) 36.
    R. Dutton, K. Nuttall, M.P. Puls, L.A. Simpson, Mechanisms of hydrogen induce delayed cracking in hydride forming materials, Metall. Tran. A8 (1977) 1553-1562.
    P. Efsing, K. Pettersson, Delayed Hydride Cracking in Irradiated Zircaloy Cladding, in: G.P. Sabol and G.D. Moan (Eds), Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354, West Conshohocken, PA (2000) 340-355.
    International Atomic Energy Agency, Delayed Hydride Cracking of Zirconium Alloy Fuel Cladding, IAEA-TECDOC-1649, IAEA, Vienna (2010).
    J.S. Bradbrook, G.W. Lorimer and N. Ridiey, The precipitation of zirconium hydride in zirconium and zircaloy-2, J. Nucl. Mater. 42 (1972) 142-160.
    B. Nath, G.W. Lorimer, N. Ridley, The relationship between gamma and delta hydrides in zirconium-hydrogen alloys of low hydrogen concentration, J. Nucl. Mater. 49 (1973) 262-280.
    B. Nath, G.W. Lorimer, N. Ridley, Effect of hydride concentration and cooling rate on hydride precipitation in α-zirconium, J. Nucl. Mater. 58 (1975) 153-162.
    D.O. Northwood, U. Kosasih, Hydrides and delayed hydrogen cracking in zirconium and its alloys, Int. Met. Rev. 28 (2) (1983) 92–121.
    T.B. Massalski, J. L. Murray, L. H. Bennett and H. Baker, editors. Binary Alloy Phase Diagrams, 2nd ed., 1986.
    C.E. Coleman and D. Hardie, The hydrogen embrittlement of α-zirconium—A review, J. Less-Common Met., 2(1966) 168–85.
    L.A. Simpson, C. D. Cann, Fracture toughness of zirconium hydride and its influence on the crack resistance of zirconium, J. Nucl. Mater., 87 (1979) 303-316.
    S.C. Lin, M. Hamasaki, Y.D. Chuang, The Effect of Dispersion and Spheroidization Treatment of δ Zirconium Hydrides on the Mechanical Properties of Zircaloy, Nucl. Sci. Eng., 71 (1979) 251-266.
    J.B. Bai, C. Prioul, J. Pelchat and F. Barcelo, Effect of Hydrides on the Ductile-Brittle Transistion in Stress-Relieved, Recrystallized and β-Treated Zircaloy-4,Proc. of Inc. Conf ANYENS, Avignon, France (1991) 223-241.
    J.H. Huang, C. S. Ho, Effect of hydrogen gas on the mechanical properties of a zirconium alloy, Mater. Chem. Phys., 38 (1994) 198-145.
    M.P. Puls, The influence of hydride size and matrix strength on fracture initiation at hydrides in zirconium alloys, Metall. Trans. A, 19 (1988) 1507-1522.
    J. Blomquist, J. Oloffson, A.-M. Alvarevol.z, C. Bjerken, Structure and Thermodynamic Properties of Zirconium Hydrides from First Principles, Preprint, University of Malme, Sweden (2010).
    J.D. Atwood, J.J. Zuckerman, Inorganic reactions and methods: Formation of ceramics, John Wiley and Sons (2011) 377.
    Philippe F. Weck, Eunja Kim, Veena Tikare, and John A. Mitchell, Mechanical properties of zirconium alloys and zirconium hydrides predicted from density functional perturbation theory, Dalton Tran. 44 (2015) 18769-18779.
    M.P. Puls, S.Q. Shi, J. Rabier, Experimental studies of mechanical properties of solid zirconium hydrides, J. Nucl. Mater. 336 (2005) 73-80.
    S. Yamanaka, K. Yoshioka, M. Uno, M. Katsura, H. Anada, T. Matsuda, and S. Kobayashi, Thermal and mechanical properties of zirconium hydride, J. Alloys Compd. 293-295 (1999) 23-29.
    H.H. Hsu, An evaluation of hydrided Zircaloy-4 cladding fracture behavior by X-specimen test, J. Alloy. Compd. 426 (2006) 256-262.
    ASTM E466-15, Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials, ASTM International, West Conshohocken, PA, 2015.
    Siddharth Suman, Mohd Kaleem Khan, Manabendra Pathak, R.N. Singh, Effects of δ‐hydride precipitated at a crack tip on crack instability in Zircaloy-4, Int J Energy Res. 42 (2018) 284-292.
    E. Garlea, H. Choo, G.Y. Wang et al., Hydride-Phase Formation and its Influence on Fatigue Crack Propagation Behavior in a Zircaloy-4 Alloy, Metal. Mater. Trans. A 41 (2010) 2816-2828.
    H.H. Johnson, J.G. Morlet, A.R. Troiano, Hydrogen, crack initiation, and delayed failure in steel, Trans. Met. Soc. AIME. 212 (1958) 528-533.
    D. Weinstein, Yield point occurrence in polycrystalline alpha-zirconium, Electochem. Technol. 4 (1966) 307.

    QR CODE