研究生: |
蔡運邦 Tsai, Yun-Pang |
---|---|
論文名稱: |
多壁奈米碳管-纖維強化乙烯基樹脂複合材料之製備及其機械性質之研究 Preparation and Mechanical Properties of Multiwalled Carbon nanotube-fiber Reinforced Vinyl Ester Composites |
指導教授: |
馬振基
Ma, Chen-Chi M. |
口試委員: |
陳景祥
江金龍 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 270 |
中文關鍵詞: | 碳纖維 、玻璃纖維 、多壁奈米碳管 、乙烯酯樹脂 、纖維強化複合材料 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討多壁奈米碳管(MWCNT)與氧化石墨烯(GO)對於玻璃纖維/乙烯酯樹脂(GF/VE)及碳纖維/乙烯酯樹脂(CF/VE)在機械強度上的影響,並比較多壁奈米碳管經不同表面改質方法後,於高分子材料中的相容性。
將P-MWCNT、TEVOS-MWCNT及Allyl-MWCNT加至玻璃纖維/乙烯酯纖維複合材料當中,玻璃纖維強化乙烯酯複合材料的拉伸強度由227.5MPa提升為254.06MPa (1phr MWCNT/GF/VE)、 258.55MPa (1phr TEVOS-MWCNT/GF/VE)與275.45MPa (1phr Allyl-MWCNT/GF/VE);玻璃纖維強化乙烯酯複合材料的破裂韌性由0.76kJ/m2,降為0.73kJ/m2 (1phr P-MWCNT/GF/VE),而改質碳管的強度分別提升為0.94kJ/m2 (1phr TEVOS-MWCNT/GF/VE)與1.07kJ/m2 (1phr Allyl-MWCNT/GF/VE),因具有官能基與樹脂有較好的界面作用力,可以提升纖維層與層之間的強度,使材料的裂縫成長速度下降,提升材料的破裂韌性。
玻璃纖維強化乙烯酯複合材料玻璃轉移溫度(Tg)由89.05oC,提升為106.78oC (1phr P-MWCNT/GF/VE)、107.70oC (1phr TEVOS-MWCNT/GF/VE)及109.70oC (1phr Allyl-MWCNT/GF/VE)。多壁奈米碳管可以阻礙材料之高分子鏈段運動, Allyl-MWCNT及TEVOS-MWCNT除了能阻斷的高分子鏈運動外,與樹脂間具有較強的界面作用力,提高纖維與樹脂之間之界面相容性,故能夠大幅提昇複合材料系統的熱穩定性。
將P-MWCNT、TEVOS-MWCNT、Allyl-MWCNT及GO加至碳纖維/乙烯酯纖維複合材料當中,碳纖維強化乙烯酯複合材料的拉伸強度由369.45MPa,提升為448.68MPa (1phr P-MWCNT/CF/VE)、465.15MPa (1phr TEVOS-MWCNT/CF/VE)、476.45MPa (1phr Allyl-MWCNT/CF/VE)及,505.04MPa(1phr GO/CF/VE),加入1phr氧化石墨烯的碳纖維強化乙烯酯複合材料有最佳強度。碳纖維複合材料的抗折強度為272.45MPa,當加入1phr P-MWCNT時,其強度會提昇至501.53MPa,而加入1phr的TEVOS-MWCNT與Allyl-MWCNT時,其強度分別為511.45MPa與521.56MPa,而最佳表現值為加入1phr氧化石墨烯,其值為558.07MPa。碳纖維強化乙烯酯複合材料的破裂韌性由0.80kJ/m2,提升為0.91kJ/m2 (1phr P-MWCNT/CF/VE)、1.04kJ/m2 (1phr TEVOS-MWCNT/CF/VE)及1.07kJ/m2 (1phr Allyl-MWCNT/CF/VE)。碳纖維強化乙烯酯複合材料玻璃轉移溫度(Tg)由98.18oC,提升為114.33oC (1phr P-MWCNT/CF/VE)、 115.67oC (1phr TEVOS-MWCNT/CF/VE)與116.67 oC (1phr Allyl-MWCNT/CF/VE)。
In this study, Multi-walled carbon nanotube(MWCNT) was modified with different methods. The Allyl-MWCNTs were prepared via free radical reaction with allylamine, which contains the ethylene groups for increase interaction between MWCNTs and vinyl ester (VE). The TEVOS was grafted on the MWCNTs surface to prepare MWCNT-TEVOS.
From the mechanical properties study, the tensile strength of glass fiber/vinyl ester was increased from 227.5MPa to 254.06MPa when 1phr P-MWCNT content was added to neat GF/VE composite. The tensile strength of GF/VE composites was increased to 258.55 MPa (with 1phr TEVOS-MWCNT) and to 275.45MPa (with 1phr Allyl-MWCNT). Modified MWCNT can improve the tensile strength of the GF/VE than that was added with unmodified MWCNT. The fracture toughness (GIC) of GF/VE composites was increased from 0.76 kJ/m2 (neat GF/VE) to 0.83kJ/m2 (with 0.25 phr MWCNT) and to 0.94 kJ/m2 (with 1.0phr TEVOS-MWCNT) and to 1.07 kJ/m2 (with 1.0phr Allyl-MWCNT). Allyl-MWCNT possesses the best interface bonding between fiber and matrix that exhibits best fracture toughness of these three kinds of composites. The Tg of GF/VE composite was 89.05℃. The GF/VE composite with 1phr TEVOS-MWCNT and Allyl-MWCNT shows the Tg which was 107.70℃, and 109.70℃ respectively. It indicated that thermal stability of composite can be improved even when a small quantity of functionalized MWCNTs was added
From the mechanical properties study, the tensile strength of carbon fiber/vinyl ester was increased from 369.45MPa to 448.68MPa when 1phr P-MWCNT content was added to neat CF/VE composite. The tensile strength of CF/VE composites increased to 465.15MPa (with 1phr TEVOS-MWCNT) and to 476.45MPa (with 1phr Allyl-MWCNT). Modified MWCNT can improve the tensile strength of the CF/VE than that of unmodified MWCNT/CF/VE composite. The GO/CF/VE composites show the best tensile strength, which were 505.04MPa with 1 phr filler content. The flexural strength of CF/VE composites was increased from 272.45MPa (neat GF/VE) to 501.53 MPa (with 1.0 phr MWCNT) and to 511.45MPa (with 1.0phr TEVOS-MWCNT) and to 521.56MPa (with 0.5phr Allyl-MWCNT).Allyl-MWCNT/CF/VE composite possesses better flexural strength than that of unmodified MWCNT/CF/VE. The GO/CF/VE composites show the best flexural strength, which was 558.07MPa with 1 phr filler content. The fracture toughness (GIC) of CF/VE composites increased from 0.80 kJ/m2 (neat CF/VE) to 0.95kJ/m2 (with 0.5 phr MWCNT) and to 1.04 kJ/m2 (with 1.0phr TEVOS-MWCNT) and to 1.07 kJ/m2 (with 1.0phr Allyl-MWCNT). Allyl-MWCNT/CF/VE exhibits the best fracture toughness due to the improvement of interface bonding between fiber and matrix. The Tg of CF/VE composite was 98.18℃. The CF/VE composite with 1phr TEVOS-MWCNT and Allyl-MWCNT shows the Tg which was 115.67℃, and 116.67℃respectively. It indicated that thermal stability of composite can be improved even when a small quantity of functionalized MWCNTs was added.
第一章
1. 馬振基、何冠穀, 國立清華大學, 研究報告(五)「國內風力發電產業發展現況分析報告報告」. 經濟部能源局98年度 能源科技研究中心推動計畫- 能源產業科技策略研究中心, 2009年11月.
2. 游啟聰, 工研院產經中心, 台灣風力發電發展現況與未來, 2008年12月.
3. 周潤培 姚星 劉坐鎮 2009 風力發電葉片用環氧乙烯基酯樹脂. 熱固性樹脂. 24(2).
4. Qian, H., Carbon nanotube-based hierarchical composites: a review. Journal of Materials Chemistry, 2010. 20(23): p. 4751-4762.
第二章
1. Blanco, M.I., The economics of wind energy. Renewable & Sustainable Energy Reviews, 2009. 13(6-7): p. 1372-1382.
2. Habali, S.M. and I.A. Saleh, Local design, testing and manufacturing of small mixed airfoil wind turbine blades of glass fiber reinforced plastics Part I: Design of the blade and root. Energy Conversion and Management, 2000. 41(3): p. 249-280.
3. Franck Bertagnolio, Niels Sorensen, Jeppe Johansen, Peter Fuglsang. Wind Turbine Airfoil Catalogue, 2001.
4. 馬振基、趙玨,”高分子複合材料(上冊)” , 國立編譯館, 華香園出版社,(2006).
5. K. K. Chawla, “ Composite Materials, Science and Engineering”, 2nd edition, Springer-Verlag, 1998.
6. A. Kelly, Pergamon, 1994, Concise encyclopedia of composite materials, revised edition.
7. Schubel, P.J., Technical cost modelling for a generic 45-m wind turbine blade produced by vacuum infusion (VI). Renewable Energy, 2010. 35(1): p. 183-189.
8. 吴强 赵国彬 朱国 2009 德国劳氏集团(GL Group)对风力发电机组叶片认证规范之技术要求概述. China Wind Energy.
第三章
1. 馬振基 2003 奈米材料科技原理與應, 全華書局, 台北.
2. Iijima, S., Helical Microtubules of Graphitic Carbon. Nature, 1991. 354(6348): p. 56-58.
3. Iijima, S. and T. Ichihashi, Single-Shell Carbon Nanotubes of 1-Nm Diameter (Vol 363, Pg 603, 1993). Nature, 1993. 364(6439): p. 737-737.
4. Hirsch, A., Functionalization of single-walled carbon nanotubes. Angewandte Chemie-International Edition, 2002. 41(11): p. 1853-1859.
5. Dresselhaus, M.S., G. Dresselhaus, and R. Saito, Physics of Carbon Nanotubes. Carbon, 1995. 33(7): p. 883-891.
6. Odom, T.W. Huang, J. L. Kim, P. Lieber, C. M., Structure and electronic properties of carbon nanotubes. Journal of Physical Chemistry B, 2000. 104(13): p. 2794-2809.
7. Thostenson, E.T., Z.F. Ren, and T.W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review. Composites Science and Technology, 2001. 61(13): p. 1899-1912.
8. Bethune, D.S., Kiang, C. H., Devries, M. S., Gorman, G., Savoy, R.Vazquez, J., Beyers, R.., Cobalt-Catalyzed Growth of Carbon Nanotubes with Single-Atomic-Layerwalls. Nature, 1993. 363(6430): p. 605-607.
9. Journet, C. Maser, W. K. Bernier, P. Loiseau, A. delaChapelle, M. L. Lefrant, S. Deniard, P. Lee, R. Fischer, J. E., Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature, 1997. 388(6644): p. 756-758.
10. Shi, Z. J., Lian, Y. F., Liao, F. H., Zhou, X. H., Gu, Z. N., Zhang, Y., Iijima, S., Li, H. D., Yue, K. T. and Zhang, S. L., Large scale synthesis of single-wall carbon nanotubes by arc-discharge method. Journal of Physics and Chemistry of Solids, 2000. 61(7): p. 1031-1036.
11. Saito, Y., Nishikubo, K., Kawabata, K. and Matsumoto, T.., Carbon nanocapsules and single-layered nanotubes produced with platinum-group metals (Ru, Rh, Pd, Os, Ir, Pt) by arc discharge. Journal of Applied Physics, 1996. 80(5): p. 3062-3067.
12. Collins, P.G. and P. Avouris, Nanotubes for electronics. Scientific American, 2000. 283(6): p. 62
13. Rinzler, A. G., Liu, J., Dai, H., Nikolaev, P., Huffman, C. B., Rodriguez-Macias, F. J., Boul, P. J., Lu, A. H., Heymann, D., Colbert, D. T., Lee, R. S., Fischer, J. E., Rao, A. M., Eklund, P. C. and Smalley, R. E.., et al., Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Applied Physics a-Materials Science & Processing, 1998. 67(1): p. 29-37.
14. Thess, A., Lee, R. Nikolaev, P., Dai, H. J., Petit, P., Robert, J., Xu, C. H., Lee, Y. H., Kim, S. G., Rinzler, A. G., Colbert, D. T., Scuseria, G. E., Tomanek, D., Fischer, J. E. and Smalley, R. E., Crystalline ropes of metallic carbon nanotubes. Science, 1996. 273(5274): p. 483-487.
15. Zhang, Y. and S. Iijima, Formation of single-wall carbon nanotubes by laser ablation of fullerenes at low temperature. Applied Physics Letters, 1999. 75(20): p. 3087-3089.
16. Huang, S.M., L.M. Dai, and A.W.H. Mau, Patterned growth and contact transfer of well-aligned carbon nanotube films. Journal of Physical Chemistry B, 1999. 103(21): p. 4223-4227.
17. Ebbesen, T.W. and P.M. Ajayan, Large-Scale Synthesis of Carbon Nanotubes. Nature, 1992. 358(6383): p. 220-222.
18. Treacy, M.M.J., T.W. Ebbesen, and J.M. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature, 1996. 381(6584): p. 678-680.
19. Kelly, B.T., Physics of graphite. 1981.
20. A.Kelly, Strong solids. 1986.
21. Overney, G., W. Zhong, and D. Tomanek, Structural Rigidity and Low-Frequency Vibrational-Modes of Long Carbon Tubules. Zeitschrift Fur Physik D-Atoms Molecules and Clusters, 1993. 27(1): p. 93-96.
22. Bao, W.X., C.C. Zhu, and W.Z. Cui, Simulation of Young's modulus of single-walled carbon nanotubes by molecular dynamics. Physica B-Condensed Matter, 2004. 352(1-4): p. 156-163.
23. Van Lier, G., Van Alsenoy, C., Van Doren, V. and Geerlings, P., Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene. Chemical Physics Letters, 2000. 326(1-2): p. 181-185.
24. Poncharal, P., Wang, Z. L., Ugarte, D. and de Heer, W. A.., Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science, 1999. 283(5407): p. 1513-1516.
25. Falvo, M. R., Taylor, R. M., Helser, A., Chi, V., Brooks, F. P., Washburn, S. abd Superfine, R.., Nanometre-scale rolling and sliding of carbon nanotubes. Nature, 1999. 397(6716): p. 236-238.
26. Wong, E.W., P.E. Sheehan, and C.M. Lieber, Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science, 1997. 277(5334): p. 1971-1975.
27. Salvetat, J.P., Bonard, J. M., et al., Elastic modulus of ordered and disordered multiwalled carbon nanotubes. Advanced Materials, 1999. 11(2): p. 161-165.
28. Yu, M. F., Lourie, O., Dyer, M. J., Moloni, K., Kelly, T. F. and Ruoff, R. S.., Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science, 2000. 287(5453): p. 637-640.
29. Salvetat, J. P. Briggs, G. A. D. Bonard, J. M. Bacsa, R. R., Kulik, A. J., Stockli, T., Burnham, N. A. and Forro, L.., Elastic and shear moduli of single-walled carbon nanotube ropes. Physical Review Letters, 1999. 82(5): p. 944-947.
30. Yu, M. F., Files, B. S., Arepalli, S. and Ruoff, R. S.., Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Physical Review Letters, 2000. 84(24): p. 5552-5555.
31. Xie, S. S., Li, W. Z., Pan, Z. W., Chang, B. H. and Sun, L. F.., Mechanical and physical properties on carbon nanotube. Journal of Physics and Chemistry of Solids, 2000. 61(7): p. 1153-1158.
32. Terrones, M., Hsu, W. K., Kroto, H. W. and Walton, D. R. M., Nanotubes: A revolution in materials science and electronics. Fullerenes and Related Structures, 1999. 199: p. 189-234.
33. Ruoff, R.S. and D.C. Lorents, Mechanical and Thermal-Properties of Carbon Nanotubes. Carbon, 1995. 33(7): p. 925-930.
34. Che, J.W., T. Cagin, and W.A. Goddard, Thermal conductivity of carbon nanotubes. Nanotechnology, 2000. 11(2): p. 65-69.
35. Kim, P., Shi, L., Majumdar, A. and McEuen, P. L.., Thermal transport measurements of individual multiwalled nanotubes. Physical Review Letters, 2001. 8721(21)
36. Hone, J., Llaguno, M. C., Biercuk, M. J., Johnson, A. T., Batlogg, B., Benes, Z. and Fischer, J. E.., Thermal properties of carbon nanotubes and nanotube-based materials. Applied Physics a-Materials Science & Processing, 2002. 74(3): p. 339-343.
37. Small, J.P., L. Shi, and P. Kim, Mesoscopic thermal and thermoelectric measurements of individual carbon nanotubes. Solid State Communications, 2003. 127(2): p. 181-186.
38. Yang, X.S., Modelling heat transfer of carbon nanotubes. Modelling and Simulation in Materials Science and Engineering, 2005. 13(6): p. 893-902.
39. Richard, C., Balavoine, F., Schultz, P., Ebbesen, T. W. and Mioskowski, C.., Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science, 2003. 300(5620): p. 775-778.
40. Kang, Y.J. and T.A. Taton, Micelle-encapsulated carbon nanotubes: A route to nanotube composites. Journal of the American Chemical Society, 2003. 125(19): p. 5650-5651.
41. Chen, R. J., Zhang, Y. G., Wang, D. W. and Dai, H. J.., Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. Journal of the American Chemical Society, 2001. 123(16): p. 3838-3839.
42. Nakashima, N., Y. Tomonari, and H. Murakami, Water-soluble single-walled carbon nanotubes via noncovalent sidewall-functionalization with a pyrene-carrying ammonium ion. Chemistry Letters, 2002(6): p. 638-639.
43. N.Nakashima, Soluble Carbon Nanotubes: Fundamentals and Applications. International Journal of Nanoscience, 2005. 4(1): p. 119-137.
44. 關旭強、陳嘉勳、官振豐、林焜章、鐘明吉, 奈米碳管強化高分子複合材料專利簡介(上)─ 碳管懸浮液及碳管高分子複材的應用. 化工技術, 2007. 第15卷第2期.
45. Ree, M., Kim, K., Woo, S. H. and Chang, H., Structure, chain orientation, and properties in thin films of aromatic polyimides with various chain rigidities. Journal of Applied Physics, 1997. 81(2): p. 698-708.
46. Auman, B.C., T.L. Myers, and D.P. Higley, Synthesis and characterization of polyimides based on new fluorinated 3,3'-diaminobiphenyls. Journal of Polymer Science Part a-Polymer Chemistry, 1997. 35(12): p. 2441-2451.
47. Nanocyl Headquarters, http://www.nanocyl.com/.
48. Yu, H., Jin, Y. G., Peng, F., Wang, H. J. and Yang, J.., Kinetically controlled side-wall functionalization of carbon nanotubes by nitric acid oxidation. Journal of Physical Chemistry C, 2008. 112(17): p. 6758-6763.
49. Parton, J.E. and S.J.T. Owen, eds. Applied Electromagnetic 2nd edition. 1986, Macmillan publishers: London.
50. Whinnery, R.S. and J.R. Fields, Waves in Commuication Electronics, 2nd edition1986, Cambridge, England: Cambridge University Press.
51. Ying, Y. M., Saini, R. K., Liang, F., Sadana, A. K., Billups, W. E.., Functionalization of carbon nanotubes by free radicals. Organic Letters, 2003. 5(9): p. 1471-1473.
52. Baek, J.B., C.B. Lyons, and L.S. Tan, Covalent modification of vapour-grown carbon nanofibers via direct Friedel-Crafts acylation in polyphosphoric acid. Journal of Materials Chemistry, 2004. 14(13): p. 2052-2056.
53. Friedel, C.C., J. M. Compt. Rend. (1877)84, 1392 & 1450.
54. Lee, H.J., Oh, S.J., In situ synthesis of poly(ethylene terephthalate) (PET) in ethylene glycol containing terephthalic acid and functionalized multiwalled carbon nanotubes (MWNTs) as an approach to MWNT/PET nanocomposites. Chemistry of Materials, 2005. 17(20): p. 5057-5064.
55. A. K. Geim and K. S. Novoselov, "The rise of graphene," Nat Mater, vol. 6, pp. 183-91, 2007.
56. 吳至彧,國立清華大學工程與系統科學系碩士論文, 2009.
57. A. Zhamu ” NGPs – an emerging class of nanomaterials” Reinforced Plastics, 2008.
58. Angstron Materials “Angstron Introduces Low Cost Graphene Platelets” Nano werk, 2008.
59. C. Lee, X. Wei, J. W. Kysar, J. Hone, "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene," Science; 321: 38 , 2008.
60. 劉家銘,奈米科技網(http://nano.nchc.org.tw/main.php).
61. X. Li “Highly conducting graphene sheets and Langmuir–Blodgett films,” Nature Nanotechnology; 3: 538, 2008.
62. K. S. Novoselov, A. K. Geim, “Electric Field Effect in Atomically Thin Carbon Films,” Science; 306: 666-9 , 2004.
63. http://only-perception.blogspot.com/2008/07/stm.html.
64. M. Crommie “A Phonon Floodgate in Monolayer Carbon: The first STM spectroscopy of graphene flakes yields new surprises,” Lawrence Berkeley National Laboratory, 2008.
65. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in grapheme NATURE; 438, 197, 2005.
66. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim,“Giant intrinsic carrier mobilities in graphene and its bilayer, ”PHYS REV LETT 100, 016602 , 2008.
67. ” Nano Graphene Platelets (NGP) ” READE.
68. 余樹楨,趙侑文,張光壽,陳威福,"碳纖維為結構分析及其與機械性質之關係"終日碳纖維研討會會議手冊,(1985).
69. 馬振基、趙玨,”高分子複合材料(下冊)” , 國立編譯館, 華香園出版社,(2006).
70. 廖義田,"纖維表面特性對複合材料物性之影響",複合材料技術講習會.
71. La Scala, J. J., Orlicki, J. A., Winston, C., Robinette, E. J., Sands, J. M., Palmese, G. R.., The use of bimodal blends of vinyl ester monomers to improve resin processing and toughen polymer properties. Polymer, 2005. 46(9): p. 2908-2921.
72. 上緯企業股份有限公司, http://www.swancor.com/index.html.
73. D.Egan , C.W., P.Fielder,”Tougher vinyl esters penetrate new markets”,Reinforced Pastics (1996.10)50-55.
74. G.Marsh, V.e.-t.m.b.b.r., Reinforced Pastics (2007.9)20-23.
75. Brill, R.P. and G.R. Palmese, An investigation of vinyl-ester - Styrene bulk copolymerization cure kinetics using Fourier transform infrared spectroscopy. Journal of Applied Polymer Science, 2000. 76(10): p. 1572-1582.
76. 廖建勛,化工資訊,8 (1996) p3.
77. Gordon E. Moore,Electronics, V., Number 8, April 19(1965).
78. Kelly, A. and W.R. Tyson, Tensile Properties of Fibre-Reinforced Metals - Copper/Tungsten and Copper/Molybdenum. Journal of the Mechanics and Physics of Solids, 1965. 13(6): p. 329.
79. Cox, H.L., The Elasticity and Strength of Paper and Other Fibrous Materials. British Journal of Applied Physics, 1952. 3(Mar): p. 72-79.
80. Krenchel H. Fibre reinforcement. Copenhagen: Akademisk Forlag;1964.
81. Hill, R., Theory of Mechanical Properties of Fibre-Strengthened Materials .1. Elastic Behaviour. Journal of the Mechanics and Physics of Solids, 1964. 12(4): p. 199-212.
82. Gryshchuk, O., Karger-Kocsis, J., Thomann, R., Konya, Z. and Kiricsi, I.., Multiwall carbon nanotube modified vinylester and vinylester - based hybrid resins. Composites Part a-Applied Science and Manufacturing, 2006. 37(9): p. 1252-1259.
83. Seyhan, A. T., Gojny, F. H., Tanoglu, M., Schulte, K.., Rheological and dynamic-mechanical behavior of carbon nanotube/vinyl ester-polyester suspensions and their nanocomposites. European Polymer Journal, 2007. 43(7): p. 2836-2847.
84. Liao, S. H., Hung, C. H., Ma, C. C. M., Yen, C. Y., Lin, Y. F. and Weng, C. C., Preparation and properties of carbon nanotube-reinforced vinyl ester/nanocomposite bipolar plates for polymer electrolyte membrane fuel cells. Journal of Power Sources, 2008. 176(1): p. 175-182.
85. Seyhan, A.T., M. Tanoglu, and K. Schulte, Tensile mechanical behavior and fracture toughness of MWCNT and DWCNT modified vinyl-ester/polyester hybrid nanocomposites produced by 3-roll milling. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2009. 523(1-2): p. 85-92.
86. Hussain, M., A. Nakahira, and K. Niihara, Mechanical property improvement of carbon fiber reinforced epoxy composites by Al2O3 filler dispersion. Materials Letters, 1996. 26(3): p. 185-191.
87. Fidelus, J. D., Wiesel, E., Gojny, F. H., Schulte, K. and Wagner, H. D.., Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites. Composites Part a-Applied Science and Manufacturing, 2005. 36(11): p. 1555-1561.
88. Chowdhury, F.H., M.V. Hosur, and S. Jeelani, Studies on the flexural and thermomechanical properties of woven carbon/nanoclay-epoxy laminates. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2006. 421(1-2): p. 298-306.
89. Siddiqui, N. A., Woo, R. S. C., Kim, J. K., Leung, C. C. K. and Munir, A.., Mode I interlaminar fracture behaviour and mechanical properties of CFRPs with nanoclay-filled epoxy matrix (vol 38, pg 449, 2007). Composites Part a-Applied Science and Manufacturing, 2007. 38(7): p. 1810-1810.
90. Cho, J., J.Y. Chen, and I.M. Daniel, Mechanical enhancement of carbon fiber/epoxy composites by graphite nanoplatelet reinforcement. Scripta Materialia, 2007. 56(8): p. 685-688.
91. Yan, Z., Yuexin, D., Lu, Y. and Fengxia, G.,The dispersion of SWCNTs treated by dispersing agents in glass fiber reinforced polymer composites. Composites Science and Technology, 2009. 69(13): p. 2115-2118.
92. Grimmer, C.S. and C.K.H. Dharan, Enhancement of delamination fatigue resistance in carbon nanotube reinforced glass fiber/polymer composites. Composites Science and Technology, 2010. 70(6): p. 901-908.
93. Safadi, B., R. Andrews, and E.A. Grulke, Multiwalled carbon nanotube polymer composites: Synthesis and characterization of thin films. Journal of Applied Polymer Science, 2002. 84(14): p. 2660-2669.
94. Sandler, J. K. W., Pegel, S., Cadek, M., Gojny, F., van Es, M., Lohmar, J., Blau, W. J., Schulte, K., Windle, A. H. and Shaffer, M. S. P.., A comparative study of melt spun polyamide-12 fibres reinforced with carbon nanotubes and nanofibres. Polymer, 2004. 45(6): p. 2001-2015.
95. Qian, H., Bismarck, A., Greenhalgh, E. S., Kalinka, G. and Shaffer, M. S. P. Hierarchical composites reinforced with carbon nanotube grafted fibers: The potential assessed at the single fiber level. Chemistry of Materials, 2008. 20(5): p. 1862-1869.
96. Qian, Hui, Greenhalgh, Emile S., Shaffer, Milo S. P. and Bismarck, Alexander Carbon nanotube-based hierarchical composites: a review. Journal of Materials Chemistry, 2010. 20(23): p. 4751-4762.
97. Gojny, F. H., Wichmann, M. H. G., Fiedler, B., Bauhofer, W. and Schulte, K.., Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites. Composites Part a-Applied Science and Manufacturing, 2005. 36(11): p. 1525-1535.
98. Green, K. J., Dean, D. R., Vaidya, U. K. and Nyairo, E.., Multiscale fiber reinforced composites based on a carbon nanofiber/epoxy nanophased polymer matrix: Synthesis, mechanical, and thermomechanical behavior. Composites Part a-Applied Science and Manufacturing, 2009. 40(9): p. 1470-1475.
99. Hsiao, K.T., J. Alms, and S.G. Advani, Use of epoxy/multiwalled carbon nanotubes as adhesives to join graphite fibre reinforced polymer composites. Nanotechnology, 2003. 14(7): p. 791-793.
100. Bekyarova, E., Thostenson, E. T., Yu, A., Kim, H., Gao, J., Tang, J., Hahn, H. T., Chou, T. W., Itkis, M. E. and Haddon, R. C.., Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites. Langmuir, 2007. 23(7): p. 3970-3974.
101. Kelkar, A.D., Effect of nanoparticles and nanofibers on Mode I fracture toughness of fiber glass reinforced polymeric matrix composites. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2010. 168(1-3): p. 85-89.
102. Zhao, J. O., Liu, L., Guo, Q. G., Shi, J. L., Zhai, G. T., Song, J. R. and Liu, Z. J. Growth of carbon nanotubes on the surface of carbon fibers. Carbon, 2008. 46(2): p. 380-383.
103. Krueger, R., P.J. Minguet, and T.K. O’Brien, Implementation of interlaminar fracture mechanics in design : an overview. 14th International Conference on Composite Materials (ICCM-14), San Diego, July 14-18, 2003.
104. Gojny, F. H., Wichmann, M. H. G., Fiedler, B., Bauhofer, W. and Schulte, K.., Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – A comparative study. Composites Science and Technology, 2005. 65: p. 2300–2313.
105. Gryshchuk, O., Karger-Kocsis, J., Thomann, R., Konya, Z. and Kiricsi, I.., Multiwall carbon nanotube modified vinylester and vinylester – based hybrid resins. Composites Part A 2006. 37: p. 1252-1259.
106. K.L. Kepple, G.P.S., P.A. Lacasse, K.M. Gruenberg, W.J. Ready, Improved fracture toughness of carbon fiber composite functionalized with multi walled carbon nanotubes. Carbon, 2008. 46: p. 2026-2033.
107. A. Godara,, L. Mezzo,, F. Luizi, A. Warrier, S.V. Lomov, A.W. van Vuure, L. Gorbatikh, P. Moldenaers, and I. Verpoest., Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites. CARBON, 2009. 47: p. 2914-2923.
108. Zhang, G., J. Karger-Kocsis, and J. Zou, Synergetic effect of carbon nanofibers and short carbon fibers on the mechanical and fracture properties of epoxy resin. Carbon, 2010. 48: p. 4289-4300.
109. I. Zaman, T.T.P., Hsu-Chiang Kuan, Qingshi Meng, Ly Truc Bao La, Lee Luong, Osama Youssf, Jun Ma, Epoxy/graphene platelets nanocomposites with two levels of interface strength. POLYMER 2011. 52: p. 1603-1611.
110. S.Y., Y. and Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. carbon 2011. 49: p. 793-803.
111. Tapas Kuila, Partha Khanra, Anata Kumar Mishra, Nam Hoon Kim, Joong Hee Lee., Functionalized-graphene/ethylene vinyl acetate co-polymer composites for improved mechanical and thermal properties. POLYMER TESTING, 2012. 31: p. 282-289.
112. Find Mølholt Jensen, Ultimate strength of a large wind turbine blade. 2008
113. Mandell, D.D.S.a.J.F., Fatigue Resistant Fiberglass Laminates for Wind Turbine Blade. ASME, 1996.
114. Fleck NA. 1997. Compressive failure in fibre composites. In Advances in Applied Mechanics, ed. JW Hutchinson, TY Wu, 33:43–117. New York: Academic.
115. John F. Mandell, Herbert J. Sutherland, and D.D. Samborsky, Effects of Materials Parameters and Design Details on the Fatigue of Composite Materials for Wind Turbine Blades. EWEC, 1999.
116. Mandell, J.F., Fatigue Behavior of Short Fiber Composite Materials,” The Fatigue Behavior of Composite Materials. 1991.
117. Griffin, D.A., Blade System Design Studies Volume I: Composite Technologies for Large Wind Turbine Blades. 2002.
118. Griffin, D.A. and T.D. Ashwill, Alternative composite materials for megawatt-scale wind turbine blades: Design considerations and recommended testing. Journal of Solar Energy Engineering-Transactions of the Asme, 2003. 125(4): p. 515-521.
119. Mandell, J.F., D.D. Samborsky, and L. Wang, New fatigue data for wind turbine blade materials. AIAA-2003-0692.
120. NA., F., Compressive failure in fibre composites. In Advances in Applied Mechanics. 1997.
121. Sutherland, H.J. and J.F. Mandell, APPLICATION OF THE U.S. HIGH CYCLE FATIGUE DATA BASE TO WIND TURBINE BLADE LIFETIME PREDICTIONS. ASME, 1996.
122. 林志韋 2008 複合材料風機葉片疊層設計分析之研究. 國立台灣大學, 工程科學及海洋工程學研究所碩士論文.
123. Brondsted, P., H. Lilholt, and A. Lystrup, Composite materials for wind power turbineblades. Annual Review of Materials Research, 2005. 35: p. 505-538.
124. Changduk Kong, Taekhyun Kim, and D. Han, Investigation of fatigue life for a medium scale composite wind turbine blade. International Journal of fatique, 2006. 28: p. 1382-1388.
125. Pancasatya Agastra, D.D.S.a.J.F.M., Fatigue Resistance of Fiberglass Laminates at Thick Material Transitions. AIAA-2009-2411, 2009.
126. WE Handbook- 5- Gurit Composite Materials for Wind Turbine Blades.
第五章
1. 林瑋寧,國立清華大學化學工程系碩士論文, 2010.
2. ASTMD790-07. Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials.
3. ASTMD3039-00. Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials.
4. ASTMD638-08. Standard Test Method for Tensile Properties of Plastics.
5. ASTMD256-06a. Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics.
6. ASTMD 2344/D 2344M – 00 (Reapproved 2006) Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates.
7. ATMD5045 – 99 (Reapproved 2007) Standard Test Methods for Plane-Strain Fracture Toughness and Strain Energy Release Rate of Plastic Materials.
8. Designation: D 5528 – 01 (Reapproved 2007) Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites.
9. 國科會貴中儀器中心.
第六章
1. 黃彥瑋,國立清華大學化學工程系碩士論文, 2009.
2. M. Hussain, A. Nakahira and K. Niihara. Mechanical property improvement of carbon fiber reinforced epoxy composites by Al,O, filler dispersion, Materials Letters, 26, 1996, pg185-191.
3. A. Godara, L. Mezzo, F. Luizi, A. Warrier, S.V. Lomov, A.W. van Vuure, L. Gorbatikh, P. Moldenaers, I. Verpoest., Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites., C arbon, 47, 2009, pg2914 –2923.