簡易檢索 / 詳目顯示

研究生: 丁元玟
論文名稱: 擴展超正交空時區段碼及其系統化建構
Expanded Super-Orthogonal Space-Time Block Codes with Systematic Construction
指導教授: 趙啟超
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 57
中文關鍵詞: 正交空時區段碼超正交空時區段碼擴展超正交空時區段碼酉矩陣解碼複雜度分集增益
外文關鍵詞: Orthogonal Space-Time Block Codes, Super-Orthogonal Space-Time Block Codes, Expanded Super-Orthogonal Space-Time Block Codes, Unitary Matrix, Decoding Complexity, Diversity Gain
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超正交空時區段碼 (Super-Orthogonal Space-Time Block Codes) 是一種可以提高正交空時區段碼 (Orthogonal Space-Time Block Codes) 頻譜效益 (Spectral Efficiency) 的編碼方式,而這種編碼方式所提出來的構想,就是把正交空時區段碼利用右乘酉矩陣 (Unitary Matrix) 的運算,來增加其碼字 (Codeword) 。因為碼字的增加,碼率 (Code Rate) 也會提高,進而可以改進頻譜效益。在這篇論文當中,我們以超正交空時區段碼為基礎,找到一種更廣泛的編碼方式,稱為擴展超正交空時區段碼 (Expanded Super-Orthogonal Space-Time Block Codes) 。我們的想法是同時考慮右乘和左乘的酉矩陣,希望可以增加碼字選擇的自由度 (Degree of Freedom)。因為擴大傳送訊號的星狀圖 (Constellation) 大小,會讓效能變差,所以我們只討論兩種酉矩陣,分別是置換矩陣 (Permutation Matrix) 和旋轉矩陣 (Rotation Matrix) ,我們發現對於旋轉矩陣來說,如果同時考慮左乘和右乘,的確可以提供更多的自由度來增加碼字,但是對於置換矩陣,考慮左乘並不影響可以增加的碼字。綜合上面兩種酉矩陣,我們可以得到擴展超正交空時區段碼的相關建構參數,並用此參數去設計擴展超正交空時區段碼的編碼冊 (Codebook) 。這篇論文中,我們還提供了一個系統而且可行的方法,去建造整個擴展超正交空時區段碼的編碼冊。我們設計的編碼方式,不僅可以保持先前超正交空時區段碼的解碼複雜度 (Decoding Complexity) ,而且可以改善超正交空時區段碼的分集增益 (Diversity Gain) 。在數目比較少的接收天線,從誤碼率 (Bit Error Rate) 的曲線來看擴展超正交空時區段碼的效能,確實會比超正交空時區段碼來的好。


    Space-time codes in both spatial and temporal domains have been proposed and become very
    popular for use in multi-input multi output systems. This thesis introduces a more general
    structure for super-orthogonal space-time codes called expanded super-orthogonal space time
    codes, which can retain the property that the maximum-likelihood decoding complexity is
    linear in the number of transmit antennas. Its codebook can be obtained by expanding
    the original space-time block code via both sides of unitary transformations. Besides, with
    a systematic parameterization, we can show a systematic procedure to obtain codebooks
    with optimal diversity gain. The results demonstrate better performance compared with
    super-orthogonal space-time block codes in terms of bit error rate.

    Abstract i Contents ii 1 Introduction 1 2 Previous Works 3 2.1 Space-Time Block Codes and Design Criteria . . . . . . . . . . . . . . . . . . 3 2.2 Super-Orthogonal Space-Time Trellis Codes . . . . . . . . . . . . . . . . . . 5 2.3 Super-Orthogonal Space-Time Block Code Using a Unitary Expansion . . . . 6 3 Expanded SOSTBCs and Systematic Parameterization 10 3.1 Degree of Freedom for ESOSTBCs by Phase Rotations . . . . . . . . . . . . 10 3.2 ESOSTBCs by Both Phase Rotations and Permutations . . . . . . . . . . . 13 4 Systematic Construction of Expanded SOSTBC Codebook 16 4.1 Case Study: 4 £ 4 QPSK ESOSTBCs . . . . . . . . . . . . . . . . . . . . . . 16 4.1.1 Column Construction for ESOSTBCs . . . . . . . . . . . . . . . . . . 17 4.1.2 Row Construction for ESOSTBCs . . . . . . . . . . . . . . . . . . . . 25 4.1.3 Overall ESOSTBC Construction . . . . . . . . . . . . . . . . . . . . . 32 4.2 Generic Procedure for 4 £ 4 ESOSTBCs . . . . . . . . . . . . . . . . . . . . 38 4.3 Construction of 4 £ 4 ESOSTBCs . . . . . . . . . . . . . . . . . . . . . . . . 42 5 Decoding Algorithm and Simulation Results 44 5.1 Decoding Algorithm for ESOSTBCs . . . . . . . . . . . . . . . . . . . . . . . 44 5.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 6 Concluding Remarks 52

    [1] G. J. Foschini and M. J. Gans, On limits of wireless communications in a fading
    environment when using multiple antennas," Wireless Personal Commun., vol. 6, pp.
    314{335, Mar. 1998.
    [2] I. E. Telatar, Capacity of multi-antenna Gaussian channels," European Trans.
    Telecomm., vol. 10, pp. 585-595, Nov. 1999.
    [3] J. C. Guey, M. P. Fitz, M. R. Bell, and W. Y. Kuo, Signal design for transmitter
    diversity wireless communicationsystems over Rayleigh fading channels," in Proc. IEEE
    Vehicular Tech. Conf., Apr. 1996, pp. 136-140.
    [4] A. R. Hammons and H. E. Gamal, On the theory of space-time codes for PSK modu-
    lation," IEEE Trans. Inform. Theory, vol. 46, pp. 524-532, Mar. 2000.
    [5] B. Vucetic and J. Yuan, Space-Time Coding, 1st ed. New York: Wiley, 2003.
    [6] V. Tarokh, N. Seshadri, and A. R. Calderbank, Space-time codes for high data rate
    wireless communication: performance criterion and code construction," IEEE Trans.
    Inform. Theory, vol. 44, pp. 744-765, Mar. 1998.
    [7] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, Space-time block codes from orthog-
    onal designs," IEEE Trans. Inform. Theory, vol. 45, pp. 1456-1467, July 1999.
    [8] W. Su and X.-G. Xia, On space-time block codes from complex orthogonal designs,"
    Wireless Personal Commun., vol. 25, pp. 1-26, Apr. 2003.
    [9] H.Wang and X.-G. Xia, Upper bounds of rates of space-time block codes from complex
    orthogonal designs," in Proc. IEEE Int. Symp. Inform. Theory, Lausanne, Switzerland,
    June 2002, p. 303.
    [10] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, Space-time block coding for wireless
    communications: performance results," IEEE J. Select. Areas Commun., vol. 17, pp.
    451-460, Mar. 1999.
    [11] O. Tirkkonen and A. Hottinen, Square-matrix embeddable space-time block codes for
    complex signal constellations," IEEE Trans. Inform. Theory, vol. 48, pp. 384-395, Feb.
    2002.
    [12] J. Grimm, M. P. Fitz, and J. V. Krogmeier, Further results on space-time codes for
    Rayleigh fading," in Proc. 36th Annu. Allerton Conf., Sept. 1998, pp. 391-400.
    [13] Q. Yan and R. S. Blum, Optimum space-time convolutional codes for quasistatic slow
    fading channels," in Proc. IEEE Wireless Commun. and Networking Conf., Sept. 2000,
    pp. 1351-1355.
    [14] S. Baro, G. Bauch, and A. Hansmann, Improved codes for space-time trellis-coded
    modulation," IEEE Commun. Lett., vol. 4, pp. 20-22, Jan. 2000.
    [15] Z. Chen, J. Yuan, and B. Vucetic, Improved space-time trellis coded modulation scheme
    on slow fading channels," Electron. Lett., vol. 37, pp. 440-441, Mar. 2001.
    [16] H. E. Gamal and A. R. Hammons, A new approach to layered space-time coding and
    signal processing," IEEE Trans. Inform. Theory, vol. 47, pp. 2321-2334, Sept. 2001.
    [17] H. E. Gamal, On the design of layered space-time systems for autocoding," IEEE
    Trans. Commun., vol. 50, pp. 1451-1461, Sept. 2002.
    [18] G. J. Foschini, Layered space-time architecture for wireless communication in a fad-
    ing environment when using multi-element antennas," Bell Labs Tech. J., pp. 41-59,
    Autumn 1996.
    [19] S. M. Alamouti, A simple transmit diversity technique for wireless communications,"
    IEEE J. Select. Areas Commun., vol. 16, pp. 1451-1458, Oct. 1998.
    [20] Z. Hao and T. Gulliver, Capacity and error probability analysis for orthogonal space-
    time block codes over fading channels," IEEE Trans. Commun., vol. 4, pp. 808-819,
    Mar. 2005.
    [21] H. Jafarkhani and N. Seshadri, Super-orthogonal space-time trellis codes," IEEE
    Trans. Inform. Theory, vol. 49, pp. 937-950, Apr. 2003.
    [22] S. Siwamogsatham and M. P. Fitz, Improved high rate space-time codes via concate-
    nation of expanded orthogonal block code and M-TCM," in Proc. IEEE Int. Conf.
    Commun., Apr. 2002, pp. 636-640.
    [23] S. Siwamogsatham and M. P. Fitz, Improved high-rate space-time codes via expanded STBC-MTCM construc-
    tions," in Proc. IEEE Int. Symp. Inform. Theory, Lausanne, Switzerland, June 2002,
    p. 106.
    [24] H. Lee, M. Siti, W. Zhu, and M. P. Fitz, Super-orthogonal space-time block code using
    a unitary expansion," in Proc. IEEE Vehicular Tech. Conf., Milan, Italy, Sept. 2004,
    pp. 2513-2517.
    [25] M. Fitz, J. Grimm, and S. Siwamogsatham, A new view of performance analysis tech-
    niques in correlated rayleigh fading," in Proc. IEEE Wireless Commun. and Networking
    Conf., New Orleans, LA, Sept. 1999, pp. 139-144.
    [26] Z. Chen, J. Yuan, and B. Vucetic, An improved space-time trellis coded modulation
    scheme on slow rayleigh fading cannels," in Proc. IEEE Int. Conf. Commun., Helsinki,
    Finland, June 2001, pp. 1110-1116.
    [27] E. Biglieri, G. Taricco, and A. Tulino, Performance of space-time codes for a large
    number of antennas," IEEE Trans. Inform. Theory, vol. 48, pp. 1794-1803, July 2002.
    [28] D. Aktas, H. E. Gamal, and M. P. Fitz, On the design and maximum likelihood
    decoding of spacetime trellis codes," IEEE Trans. Commun., vol. 51, pp. 854-859, June
    2003.
    [29] G. Ungerboeck, Channel coding for multilevel/phase signals," IEEE Trans. Inform.
    Theory, vol. 28, pp. 55-67, Jan. 1982.
    [30] I. N. Herstein, Abstract algebra, 3rd ed. New York: Wiley, 1999.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE