簡易檢索 / 詳目顯示

研究生: 劉正芝
Liu, Cheng-Chih
論文名稱: 克服穿戴式運動監測系統中因人體造成的訊號阻擋所產生的間歇性通訊
Overcoming Intermittent Communication due to Body Obstruction in Wearable Exercise Monitoring Systems
指導教授: 金仲達
King, Chung-Ta
口試委員: 高榮駿
蔡明哲
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2014
畢業學年度: 103
語文別: 英文
論文頁數: 23
中文關鍵詞: Wireless Body Area NetworkWBANRehabilitationWearable
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,一個國家復健治療的好壞,決定了一個國家是否為先進國家。復健的目的是讓病患可以恢復,或是維持身體某一部份的功能。以往復健需要在醫院進行,由專業的物理治療師在一旁看護,確保病患的復健安全並有效。然而小型電子裝置的發展,使得病患現在可以借由穿著可穿戴式的感測器,在家中進行復健。由於大部份的穿戴式感測器需要借由radio把資料傳送回接收端,所以我們需要克服訊號的遮蔽的問題。以網路的角度來看,由穿戴式感測器所組成的無線人體區域網路(WBAN),因為訊號遮蔽而變得斷斷續續,進而造成資料丟失。我們可以將這種WBAN當作一種延遲容忍網路(DTN),之後便有很多中方法可以解決這個問題。
    當我們考慮復健運動監控的特定一種應用時,我們可以找出更多DTN的解法。我們觀察到復健的其中一個特性,即做復健運動時,病患會不斷重複地做同樣一個動作。而這個重複的動作隱含了許多有用的資訊,包括兩個感測器相遇的時間,以及其中一個感測器如何能幫助另外一個感測器傳送訊息給接收端。在這篇論文中,我們利用這個特性,為感測器找到了一個有效的傳輸排程。我們分成兩個部分來解決這個問題。在第一個部分,我們收集感測器在病患做動作時的動態鄰居資料,並從這些資料當中找出重複的動作,再利用這個動作來安排感測器之間的溝通與代傳。在第二個部分,可穿戴感測器便依循第一部分做出的行程來執行傳輸。實驗結果顯示我們的系統依照預期的執行,在實際的復健運動中展現良好的性能。


    Nowadays, physical therapy has become an indicator of the advancement of a country. Physical therapy helps patients to regain and maintain proper functioning of their bodies. Traditionally, physical therapy has to be performed in the hospitals, assisted and monitored by professional therapists to ensure the safety and effectiveness. With the development of microelectronics, home rehabilitation is now possible with wearable sensors worn on patients to monitor their rehabilitative exercises at home. As most these wearable devices communicate their data with the gateway (or sink) through radio, the blockage of radio signals by the human body is a difficult challenge. From the network perspective, the blockage results in intermittent connections of the wireless body area network (WBAN) formed by the wearable sensors, causing data losses during transmissions. Such a WBAN can be modeled as a delay-tolerant network (DTN), and its data loss problem may be solved using many existing solutions proposed in the literature.
    On the other hand, when considering the specific application of rehabilitation exercise monitoring, more efficient DTN solutions may be developed. One key observation is that almost all rehabilitation exercises require repetitive movements. The repetitive body moving patterns provide valuable hints on when two sensor nodes will meet, and how one may help the other to relay data to the sink. In this thesis, we exploit this behavior for very efficient transmission scheduling of the wearable sensors. We solve the problem in two parts. First, we collect dynamic neighboring information of the wearable sensors during the exercise. From the collected information, repetitive neighboring patterns are identified, which are then used to schedule when two sensors should communicate to relay data. In the second part of our scheme, the wearable sensors just follow the transmission schedule to send and relay data. Experimental results show that our system operates correctly using the transmission schedule and it performs well in real rehabilitation exercises.

    1 Introduction 1 2 System Design 4 2.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Information Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Pattern Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Experiments 11 3.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4 Conclusions and Future Works 19

    [1] “心臟手術後的復健運動”.
    [2] “淺談慢性阻塞性肺病肺部復健之呼吸大法及運動訓練”.
    [3] “Nhs choices: Balance exercises”.
    [4] “Nhs choices: Strength exercises”.
    [5] “Real meaning of rehabilitation”.
    [6] “Policy statement: Description of physical therapy”.
    [7] “Physical therapy”.
    [8] Yu-Chee Tseng, Chin-Hao Wu, Fang-Jing Wu, Chi-Fu Huang, Chung-Ta
    King, Chun-Yu Lin, Jang-Ping Sheu, Chun-Yu Chen, Chi-Yuan Lo, Chien-
    Wen Yang, and Chi-Wen Deng, “A wireless human motion capturing system
    for home rehabilitation.”, in Mobile Data Management. 2009, pp. 359–360,
    IEEE Computer Society.
    [9] Luis A. Rocha Pedro Macedo, José A. Afonso, “A telerehabilitation system
    based on wireless motion capture sensors”, in PhyCS, 2014.
    [10] Abdelkrim Hadjidj, Marion Souil, Abdelmadjid Bouabdallah, Yacine Challal,
    and Henry L. Owen, “Wireless sensor networks for rehabilitation applications:
    Challenges and opportunities.”, J. Network and Computer Applications,
    vol. 36, no. 1, pp. 1–15, 2013
    [11] Abdelkrim Hadjidj, Abdelmadjid Bouabdallah, and Yacine Challal, “Rehabilitation
    supervision using wireless sensor networks.”, in WOWMOM.
    2011, pp. 1–3, IEEE.
    [12] Abdelkrim Hadjidj, Yacine Challal, and Abdelmadjid Bouabdallah, “Toward
    a high-fidelity wireless sensor network for rehabilitation supervision.”,
    in LCN, Chun Tung Chou, Tom Pfeifer, and Anura P. Jayasumana, Eds.
    2011, pp. 458–465, IEEE.
    [13] Mikael Soini, Jussi Nummela, Petri Oksa, Leena Ukkonen, and Lauri
    Sydänheimo, “Wireless body area network for hip rehabilitation system”,
    Ubiquitous Computing and Communication Journal, 2012.
    [14] Chun-Yu Lin, Yi-Yin Chang, Kuan-Chung Ding, and Chung-Ta King,
    “Overcoming body obstruction for robust data communication in wireless
    body sensor networks by placing relay nodes”, in IEEE Sensors, 2011.
    [15] Ryan Aylward and Joseph A. Paradiso, “A compact, high-speed, wearable
    sensor network for biomotion capture and interactive media.”, in IPSN,
    Tarek F. Abdelzaher, Leonidas J. Guibas, and Matt Welsh, Eds. 2007, pp.
    380–389, ACM.
    [16] Anirudh Natarajan, Buddhika de Silva, Kok-Kiong Yap, and Mehul Motani,
    “Link layer behavior of body area networks at 2.4 ghz.”, in MOBICOM,
    Kang G. Shin, Yongguang Zhang, Rajive Bagrodia, and Ramesh Govindan,
    Eds. 2009, pp. 241–252, ACM.
    [17] Muhannad Quwaider, Mahmoud Taghizadeh, and Subir Biswas, “Modeling
    on-body dtn packet routing delay in the presence of postural disconnections.”,
    EURASIP J. Wireless Comm. and Networking, vol. 2011, 2011.
    [18] Felix Büsching, Maximiliano Bottazzi, Wolf-Bastian Pöttner, and Lars C.
    Wolf, “Dt-wban: Disruption tolerant wireless body area networks in healthcare
    applications.”, in WiMob. 2013, pp. 196–203, IEEE.
    [19] Chien ying Chen, Yu ting Chen, Yi hsuan Tu, Shun yao Yang, and Pai H.
    Chou, “Ecospire: an application development kit for an ultra-compact wireless
    sensing system”, Embedded Systems Letters, IEEE, pp. 65–68, 2009.
    [20] “Taiwan spinocerebellar ataxia association”.
    [21] nRF24LE1 Product Specification rev1.6.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE