簡易檢索 / 詳目顯示

研究生: 吳佩穎
Wu, Pei-Yin
論文名稱: 節能儲存系統之模擬分析與實作
Energy-efficient storage system simulation and analysis
指導教授: 石維寬
Shih, Wei-Kuan
口試委員: 衛信文
呂政修
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 40
中文關鍵詞: 節能儲存系統
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技的發展,人們創造的資料量連年提升,且近年來資料儲存方式多已
    數位化,大量儲存系統也隨之蓬勃發展,無論是雲端技術或各類型data center 皆
    需要使用多個儲存設備,這樣的儲存系統需要大量的供電,這些耗電量不僅減少
    了企業的營收,也讓能源損耗得更為嚴重,因此如何減少大量儲存系統的用電量,
    已成為重要的議題。
    節約能源的做法,在傳統上是希望能使硬碟有效率的spin-down,因為儲存
    系統中的閒置模式或是睡眠模式往往會被使用者的要求(request)被迫中斷,因而
    進入耗電的存取模式,因此應盡量延長硬碟閒置的時間以達成節電。為了使研究
    貼近實際資料存取模式(access pattern),我們分析了各種實際系統的workload,
    觀察這些workload 後,得知實際系統中大部分資料存在批次讀寫的特性。因此
    應用SSD 結合硬碟作為儲存系統,將SSD 做為buffer 以暫存資料的方式,並根
    據workload 特性訂定寫入機制(write policy)讓資料得以有效率的批次寫入硬碟,
    達成減少電能的損耗,此外也制定讀取機制(read policy)作為系統上的微調。
    另外,如何確保不遺失資料使資料具有可靠性也是我們考量的議題,我們參
    考了幾種容錯機制,並作仔細的分析,將其中一種容錯機制經由調整演算法後納
    入所提出的系統,因此我們結合了資料容錯與節約能源兩方向的議題做研究。
    我們主要的挑戰在於資料的可靠度需要以空間換取,例如增加冗餘位元,而
    這些存放資料與冗餘位元的空間可能讓系統更耗電,因此如何藉由資料放置的方
    法使系統在資料可靠度與能源耗損兩者中取得最大效益,又能讓機制擁有足夠的
    動態調整性能,讓省電機制在不同的workload 也能發揮效益,這是我們所挑戰
    的目標。而我們系統的實驗結果達成20%~40%的省電量。


    1. Introduction ................................................................................................................... 1 1.2. Background .......................................................................................................... 2 1.3. Workload Introduction.......................................................................................... 2 1.4. Paper Organization ............................................................................................... 3 2. Erasure Codes Introduction ............................................................................................ 4 2.1. Erasure Codes Overview ...................................................................................... 4 2.1.1. RAID ............................................................................................................... 4 2.1.2. Chain Codes ..................................................................................................... 5 2.1.3. Simple Product Code (SPC) ............................................................................. 6 2.1.4. Row-Diagonal Parity (RDP) ............................................................................. 6 2.1.5. Stepped Combination Code (SCC).................................................................... 7 2.1.6. Lattice .............................................................................................................. 8 2.2 Performance analysis description ...................................................................... 9 3. Characteristics of SSD and Hard Drives ....................................................................... 11 3.1. Power consumption characteristic of Disk........................................................... 11 3.1.1. Disk Power Model ..................................................................................... 11 3.1.2. Reducing Spin-up Times ................................................................................ 12 3.2. Power consumption characteristics of SSD ....................................................... 12 3.2.1. SSD power consumption ................................................................................ 13 3.2.2 Limitation of SSD .......................................................................................... 14 4. Energy-efficient System Model ................................................................................... 15 4.1. System Architecture ........................................................................................... 15 4.1.1. Policy for writing ........................................................................................... 16 4.1.2. Policy for reading ........................................................................................... 17 4.2. Data Placement Algorithm .................................................................................. 20 5. Experiment .................................................................................................................. 22 5.1. Simulate Environment ........................................................................................ 22 5.2. Workload Analysis ............................................................................................. 23 5.3. Experiment Result and Analysis ......................................................................... 32 6. Conclusion .................................................................................................................. 37 7. Reference .................................................................................................................... 38

    [1] The Design and Evaluation of RAID 5 and Parity Striping Disk Array
    Architectures. S.Z. Chen, D. Towsley Journal of Parallel and Distributed
    Computing Volume 17, Issues 1–2, January 1993, Pages 58–74
    [2] Energy Optimization Policies for Server Clusters. Nidhi Singh and Shrisha
    Rao. IBM India Private Limited. International Institute of Information
    Technology - Bangalore 6th annual IEEE Conference on Automation Science
    and Engineering.Toronto, Ontario, Canada, August 21-24, 2010
    [3] Young Choon Lee, Albert Y. Zomaya. Energy efficient utilization of
    resources in cloud computing systems Springer Science+Business Media,
    LLC 2010
    [4] Jay J. Wylie and Ram Swaminathan Hewlett-Packard Labsjay.wyli.
    Determining fault tolerance of XOR-based erasure codes efficiently.
    Published in proceedings of DSN 2007, The 37th Annual IEEE/IFIP
    International Conference on Dependable Systems and Networks, June 25 -
    June 28, 2007, Edinburgh, UK
    [5] Kevin M. Greenan, Xiaozhou Li,Jay J. Wylie. Flat XOR-based erasure codes
    in storage systems:Constructions, efficient recovery, and tradeoffs.
    978-1-4244-7153-9/10/ $26.00 c_2010 IEEE
    [6] Reliability and Power-Efficiency inErasure-Coded Storage SystemsTechnical
    Report UCSC-SSRC-09-08December 2009
    Kevin M. Greenan .Storage Systems Research Center Baskin School of
    Engineering University of California, Santa Cruz Santa Cruz, CA 95064
    [7] Carrera, E., Pinheiro, E., and Bianchini, R. 2003. Conserving disk energy in
    network servers. In Proceedings of the 17th Annual ACM International
    Conference on Super Computers, San Francisco, CA.
    [8] Colarelli, D. and GrunwalD, D. 2002. Massive arrays of idle disks For
    storage archives. In Proceedings of the ACM/IEEE Conference on
    Supercomputing, Baltimore, MD.
    [9] GurumurthI, S., Sivasubramaniam, A., Kandemir, M., and Franke, H. 2003.
    DRPM: Dynamic speed control for power management in server class disks.
    In Proceedings of the International Symposium on Computer Architecture,
    San Diego, CA.
    [10] Pinheiro, E. and Bianchini, R. 2004. Energy conservation techniques for disk
    array-based servers. In Proceedings of the 18th Annual ACM International
    39
    39
    Conference on Supercomputing, Saint-Malo, France.
    [11] Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. Write
    Off-Loading: Practical Power Management for Enterprise Storage. In
    FAST’08: Proceedings of the 6th USENIX Conference on File and Storage
    Technologies, pages 1–15, Berkeley, CA, USA, 2008. USENIX Association.
    [12] Nikolai Joukov, Josef Sipek, GreenFS: making enterprise computers greener
    by protecting them better, Eurosys '08 Proceedings of the 3rd ACM
    SIGOPS/EuroSys European Conference on Computer Systems 2008
    [13] Jacob Leverich and Christos Kozyrakis. On the Energy (In)efficiency of
    Hadoop Clusters. In HotPower’09, Workshop on Power Aware Computing
    and Systems, 2009.
    [14] Rini T. Kaushik , Milind Bhandarkar, GreenHDFS: towards an
    energy-conserving, storage-efficient, hybrid Hadoop compute cluster,
    Proceedings of the 2010 international conference on Power aware computing
    and systems, p.1-9, October 03, 2010, Vancouver, BC, Canada
    [15] Miriam Allalouf, Storage modeling for power estimation, SYSTOR '09
    Proceedings of SYSTOR 2009.
    [16] Li, D., Gu, P., Caj, H., and Wang, J. 2004. EERAID: Energy efficient
    redundant and inexpensive disk array. In Proceedings of the 11th ACM
    SIGOPS European Workshop, Leuven, Belgium.
    [17] Pinheiro, E., Bianchini, R., and DubnickI, C. 2006. Exploiting redundancy to
    conserve energy in storage systems. In Proceedings of the ACM
    SIGMETRICS Conference on Performance,Saint-Malo, France.
    [18] YaO, X. and Wang, J. 2006. RIMAC: A novel redundancy-based hierarhical
    cache architecture for energy efficient, high performance storage systems. In
    Proceedings of the EuroSys, Leuven, Belgium.
    [19] Charles Weddle, Mathew Oldham, Jin Qian, and An-I Andy Wang, PARAID:
    A gear-shifting power-aware RAID, ACM Transactions on Storage (TOS)
    Volume 3 Issue 3, October 2007
    [20] P. M. Chen, E. L. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson. RAID :
    High-performance, reliable secondary storage. ACM Computing Surveys,
    26(2):145–185, June 1994.
    [21] Gniady, C., Butt, A., Hu, Y., and LU, Y. H. 2006. Program counter-based
    prediction techniques for dynamic power management. IEEE Trans. Comput.
    55, 6, 641–658.
    [22] T. Bisson, S. A. Brandt, and D. Long. A hybrid disk-aware spin-down
    algorithm with I/O subsystem support. In Proceedings of the International
    Performance Conference onComputers and Communication (IPCCC '07),
    40
    40
    New Orleans, April 2007.
    [23] Zhu, Q., David, F.M., Devaraj, C., Li, Z., Zhou, Y., and Cao, P. 2004.
    Reducing energy consumption of disk storage using power-aware cache
    management. In Proceedings of the 10th International Symposium on High
    Performance Computer Architecture, Madrid, Spain.
    [24] Zhu, Q., Shanker, A., and Zhou, Y. 2004b. PB-LRU: A self-tuning power
    aware storage cache replacement algorithm for conserving disk energy. In
    Proceedings of the 18th Annual ACM International Conference on
    Supercomputing, Saint-Malo, France.
    [25] Timothy Pritchett, Mithuna Thottethodi, SieveStore: A Highly-Selective,
    Ensemble-level Disk Cache for Cost-Performance, ISCA '10 Proceedings of
    the 37th annual international symposium on Computer architecture, 2010
    [26] Wes Felter, Anthony Hylick, and John Carter, Reliability-Aware Energy
    Management for Hybrid Storage Systems, Mass Storage Systems and
    Technologies (MSST), 2011 IEEE 27th Symposium, pp 1-13, May 2011
    [27] Peter J. Denning, The locality of principle, Communications of the ACM,
    Volume 48 Issue 7, July 2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE