簡易檢索 / 詳目顯示

研究生: 邱顯庭
Chiu, Hsien-Ting
論文名稱: 發展新穎治療型奈米藥物平台:核殼結構之白蛋白質/金奈米棒奈米劑型於癌症應用
Development of Novel Therapeutic Nanoplatform: Albumin-Gold Nanorods Based Core-Shell Nanoagent for Cancer Application
指導教授: 黃郁棻
Huang, Yu-Fen
口試委員: 江啟勳
Chiang, Chi-Shiun
何佳安
Ho, Ja-an
胡尚秀
Hu, Shang-Hsiu
陳韻晶
Chen, Yun-ching
陳冠宇
Chen, Guan-Yu
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 144
中文關鍵詞: 白蛋白金奈米棒巨噬細胞藥物傳遞腫瘤治療結合治療蛋白吸附
外文關鍵詞: albumin, gold nanorod, macrophage, drug delivery, cancer therapy, combination therapy, protein adsorption
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年在白蛋白(albumin)與金奈米棒(gold nanorods)之奈米系統快速發展下,兩系統於腫瘤之相關研究上已分別取得了相當豐碩的成果,然而,兩奈米系統的結合在現階段的研究中仍需要面對許多的挑戰,例如:如何使新結合的複合材料保持原有的穩定性與製程的再現性是目前普遍認為的核心問題之一。因此,以材料穩定性、再現性與製程便利為主要出發點,本研究成功地開發出戊二醛(glutaraldehyde)交聯法與有機溶劑沉降法(dissolvation)以製備出具備高載體穩定性與再現性的白蛋白與金奈米棒之複合材料,前者稱GTA載體;後者則稱EM載體。兩製成之複合奈米載體雖然在載體大小、表面電位與殼核構型等特徵非常相似,然而,本研究發現相較於EM載體,GTA載體經交聯後仍能保存部份白蛋白結構,降低表面環境蛋白質吸附,進而減少巨噬細胞辨認或增加癌細胞的吞噬量;另一方面,交聯後的白蛋白相較於EM載體的白蛋白被發現除了能增加材料於抗癌藥物(doxorubicin)的包覆量增加,還能提升載體在雷射光照後的穩定性,以幫助包覆在奈米載體內的抗癌藥物(doxorubicin)釋藥效率提升;此外,本研究發現交聯後的白蛋白能提升金奈米棒的光聲(photoacoustic)強度,以利於顯影劑的開發。接著,利用上述EM載體相較於GTA載體較容易被巨噬細胞吞噬的特點為主軸,本研究將此結果延伸至細胞傳遞的應用(cell-based delivery)。然而,由於過去諸多在癌症相關之文獻已發現不論是靜脈注射法或是原位注射法,兩者皆碰到了藥物於腫瘤微環境之擴散效率與分佈位置等問題,使得治療流程所需要的藥物劑量非常高,但治療效果有時仍不盡理想。因此有別於過去一般關於細胞傳遞的文獻注重於追求最佳化的注射劑量與相對應的治療療效,本研究針對藥物在腫瘤的分佈與滯留時間兩特點於癌症治療的重要性,藉由EM載體與EM載體結合之細胞傳遞兩系統做統整性的研究與討論。本研究發現EM載體結合之細胞傳遞系統相較於單一EM載體系統或甚至單一小分子抗癌藥物系統(free drug)在原位注射至腫瘤後,能夠有效地提升藥物於腫瘤的分佈與滯留的時間,經雷射光照後能更有效地抑制腫瘤生長;相對地,單一EM載體系統因藥物分佈不均勻,經雷射光照後產生的熱或載體攜帶之藥物無法有效地傳遞與分佈至腫瘤各處,導致產生的熱能量與載體攜帶的藥物僅累積於原藥物注射位置,此結果不但未能有效抑制腫瘤生成,過度的熱能量與藥物濃度造成該局部區域嚴重的潰傷等副作用,更使得該傷口無法復原;單一小分子抗癌藥物系統則因為在腫瘤的滯留時間太短,大幅度地減低腫瘤治療的效果。此結果證實如何提升藥物於腫瘤的分佈與滯留的時間在奈米傳遞系統的設計上是需要被更加地關注。綜合上述兩部份之結果,本系統成功地開發出殼核構型之白蛋白與金奈米棒之奈米複合系統(GTA和EM),分別對於材料上的特徵、性質與癌症的相關應用上做一系列完整的討論,針對於EM載體系統,本研究進一步以結合細胞傳遞的概念,探討藥物分佈與滯留時間在癌症治療的重要性。希望這一系列在奈米載體於癌症治療的研究上,從材料製成、藥物包覆、影像能力、材料於細胞與動物環境所造成的影響 (例如:環境蛋白吸附)與藥物傳遞效率等不同的面向切入,未來能帶給其他研究者不同的認知與啟發,以幫助癌症的相關研究更加邁進了一步。


    Recently, the rapid development of albumin- and gold nanorod- based nanoplatforms has individually offered promising solutions for addressing numerous difficulties in cancer research. However, fabricating a hybrid nanocomposite comprising both albumin and gold nanorod with high quality, homogeneity and dispersity remains a great challenge nowadays. In this study, two robust and one-step synthesis, a direct glutaraldehyde (GTA) cross-linking and a new desolvation method were provided for the fabrication of a uniform core-shell gold nanorod/serum albumin nanoplatform (NR@SA). Interestingly, despite they have similar particle size, morphology and surface charge, it is surprisingly found that their behaviors are totally different in many perspectives. The cross-linked nanoparticles (NR@SAs, GTA) compared with denatured nanoparticles (NR@SAs, EM) preserves half-native characterizations, resulting in reducing protein corona formation, macrophage phagocytosis and enhancing tumor cell internalization; the other half-artificial properties strengthen the capability of drug loading/release and thermal transduction for photoacoustic imaging. The results provide the forefront and fundamental information at the interface of protein shell control for cancer theranostics. Furthermore, by conversely utilizing the aforementioned result of preference macrophage phagocytosis of NR@SAs (EM), nanoparticles-laden macrophage delivery system was successfully established. Instead of finding the best solution for chasing the maximum therapeutic efficacy, the bio-combination is aimed to dig in more basic investigations and discuss the importance of intratumoral drug homogeneity and retention ability in cancer therapy, because not just for those intravenous nano-drug delivery systems, nano/micro-particles for intratumoral therapy is also facing numerous difficulties such as uncontrollable injection site, uneven drug distribution and inefficient drug transportation, and the large dose requirement that is occasionally along with side effect, particularly in many clinical case. Our results demonstrated that the movable and drug-loading bio-reservoir compared with the pristine counterparts exerts the higher tumor coverage and prolongs drug retention time that can efficiently improve the therapeutic efficacy and minimize the possible adverse effect. By contrast, similar to the summaries in many clinical studies using intratumoral chemotherapy, injecting with the high dose of pristine nanoparticles not only displays limited therapeutic effect, but also leads to unhealable wounds and impair the quality of life. Overall, the two core-shell nanoparticles are devoted to a wide range study and understanding from fundamental research in biomaterial science to in vivo drug delivery application against cancer. Hopefully, this new discovery and related discussions will bring promising benefits in nanoparticle development for cancer theranostics.

    摘要 II Abstract IV Acknowledgement VI Table of Contents VIII Table of Figures X Chapter Ⅰ: Introduction 1 1.1 Gold nanoparticles 1 1.1.1 Gold nanoparticles: Introduction 1 1.1.2 Synthesis of gold nanorods (Au NRs) 2 1.1.3 Functionalization and modification of Au NRs 3 1.1.4 Advanced design of gold nanorods for cancer treatment 5 1.1.5 Gold nanorods as a contrast imaging agent 9 1.2 Albumin 11 1.2.1 Introduction for albumin 11 1.2.2 Market approved albumin technologies 11 1.2.3 Versatile albumin nanocarriers for drug delivery and biomedical imaging 14 1.2.4 Albumin-based hybrid nanoplatform 15 1.3 Nanoparticles for cancer therapy 17 1.3.1 What are the difficulties we are facing with? 17 1.3.2 An opportunity: Specific surface modification for drug delivery 19 1.3.3 An opportunity: External stimuli for an augment of EPR effect 20 1.3.4 An opportunity: Neutral cell-mediated delivery system 22 1.3.4 What are the other things regarding cancer therapy we should think of? 24 1.4 Objective and purpose of this study 27 Chapter Ⅱ: Experimental Sections 31 2.1 Materials 31 2.1.1 Chemicals 31 2.1.2 Buffer 32 2.2 Laboratory apparatus and equipment 33 2.3 Experimental Methods 34 2.3.1 Preparation of Au NRs, NR@SAs and NR@DOX:SAs. 34 2.3.2 Characterization of NR@SAs and NR@DOX:SAs. 35 2.3.3 Analysis of protein adsorption. 37 2.3.4 In vitro cell culture. 40 2.3.5 In vitro studies for investigation of GTA/EM system in the first section (3.1). 40 2.3.6 In vitro studies for investigation of nanoparticle-laden macrophage delivery system in the second section (3.2). 42 2.3.7 In vivo animal experiments. 43 2.3.8 In vivo animal investigation of GTA system in the first section. 43 2.3.9 In vivo animal investigation of EM system in the second section. 44 2.3.10 Photoacoustic microscopy system. 46 2.3.11 Statistical Analysis 47 Chapter Ⅲ. Results and Discussions 48 3.1 GTA system: bioprosthesis of a half-native and half-artificial nanohybrid for cancer theranostics 48 3.1.1 NR@SAs core-shell nanoplatform by a high extent of cross-linked strategy or a new desolvation method 48 3.1.2 Bioprosthetic albumin shell reduced free protein adsorption and phagocytosis by macrophages but enhanced tumor cell uptake 54 3.1.3 Bioprosthetic albumin shell reduced protein corona formation by blood proteins 61 3.1.4 Artificial characteristics: Crosslinking effect for high drug loading capacity of NR@SAs (GTA) 68 3.1.5 Hard and soft protein shells for in vitro drug release 72 3.1.6 Characterization of cross-linked SA shell: Amplifying the enhancement of photoacoustic signals over pristine Au NRs. 79 3.1.7 NR@SA nanoplatform for cancer theranostics 82 3.1.8 Combinational photothermal- and chemo-therapy. 84 3.2 EM system: The importance of drug distribution and retention ability for combined therapy. 88 3.2.1 Designing NR@SAs (EM) core-shell nanoplatform for cell-based delivery strategy 88 3.2.2 NIR light-activated drug release from payload-laden macrophages. 90 3.2.3 In vitro estimation of the feasibility of macrophage delivery system for in vivo studies 96 3.2.4 Cell-mediated drug delivery system improves drug coverage and distribution and enhances retention ability. 99 3.2.5 The more homogeneous photothermal drug delivery was achieved by combinational therapy through multiple intratumoral injections. 102 3.2.6 What happened when localized photothermal drug delivery was achieved? 106 3.2.7 The more homogeneous chemodrug and photothermal delivery by the cell-mediated delivery system resulted in precise NIR-laser-activated drug release for improved antitumor effects. 111 3.2.8 In vivo tumor-tropic migration and specific accumulation in the hypoxic region. 113 Chapter Ⅲ. Conclusion 117 Chapter Ⅳ. Perspectives 119 Appendix: Reference 123

    1. Rana, S.; Bajaj, A.; Mout, R.; Rotello, V. M., Monolayer coated gold nanoparticles for delivery applications. Adv. Drug Delivery Rev. 2012, 64 (2), 200-216.
    2. Yeh, Y. C.; Creran, B.; Rotello, V. M., Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale 2012, 4 (6), 1871-1880.
    3. Chen, H. J.; Shao, L.; Li, Q.; Wang, J. F., Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 2013, 42 (7), 2679-2724.
    4. Alkilany, A. M.; Thompson, L. B.; Boulos, S. P.; Sisco, P. N.; Murphy, C. J., Gold nanorods: Their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv. Drug Delivery Rev.iews 2012, 64 (2), 190-199.
    5. Weissleder, R., A clearer vision for in vivo imaging. Nat. Biotechnol. 2001, 19 (4), 316-317.
    6. Zhang, Z.; Wang, J.; Chen, C., Near-infrared light-mediated nanoplatforms for cancer thermo-chemotherapy and optical imaging. Adv. Mater. 2013, 25 (28), 3869-3880.
    7. Mackey, M. A.; Ali, M. R. K.; Austin, L. A.; Near, R. D.; El-Sayed, M. A., The Most Effective Gold Nanorod Size for Plasmonic Photothermal Therapy: Theory and In Vitro Experiments. J. Phys. Chem. B 2014, 118 (5), 1319-1326.
    8. Huang, X.; Neretina, S.; El-Sayed, M. A., Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv. Mater. 2009, 21 (48), 4880-4910.
    9. Nikoobakht, B.; El-Sayed, M. A., Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15 (10), 1957-1962.
    10. Gole, A.; Murphy, C. J., Seed-mediated synthesis of gold nanorods: Role of the size and nature of the seed. Chem. Mater. 2004, 16 (19), 3633-3640.
    11. Alkilany, A. M.; Frey, R. L.; Ferry, J. L.; Murphy, C. J., Gold nanorods as nanoadmicelles: 1-naphthol partitioning into a nanorod-bound surfactant bilayer. Langmuir 2008, 24 (18), 10235-10239.
    12. Alkilany, A. M.; Nagaria, P. K.; Hexel, C. R.; Shaw, T. J.; Murphy, C. J.; Wyatt, M. D., Cellular Uptake and Cytotoxicity of Gold Nanorods: Molecular Origin of Cytotoxicity and Surface Effects. Small 2009, 5 (6), 701-708.
    13. Wang, L. M.; Li, J. Y.; Pan, J.; Jiang, X. M.; Ji, Y. L.; Li, Y. F.; Qu, Y.; Zhao, Y. L.; Wu, X. C.; Chen, C. Y., Revealing the Binding Structure of the Protein Corona on Gold Nanorods Using Synchrotron Radiation-Based Techniques: Understanding the Reduced Damage in Cell Membranes. J. Am. Chem. Soc. 2013, 135 (46), 17359-17368.
    14. Wijaya, A.; Schaffer, S. B.; Pallares, I. G.; Hamad-Schifferli, K., Selective Release of Multiple DNA Oligonucleotides from Gold Nanorods. ACS Nano 2009, 3 (1), 80-86.
    15. Niidome, T.; Yamagata, M.; Okamoto, Y.; Akiyama, Y.; Takahashi, H.; Kawano, T.; Katayama, Y.; Niidome, Y., PEG-modified gold nanorods with a stealth character for in vivo applications. J.Controlled Release 2006, 114 (3), 343-347.
    16. Zijlstra, P.; Paulo, P. M. R.; Orrit, M., Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat. Nanotechnol. 2012, 7 (6), 379-382.
    17. Zhang, W. J.; Wang, F. H.; Wang, Y.; Wang, J. N.; Yu, Y. N.; Guo, S. R.; Chen, R. J.; Zhou, D. J., pH and near-infrared light dual-stimuli responsive drug delivery using DNA-conjugated gold nanorods for effective treatment of multidrug resistant cancer cells. J. Controlled Release 2016, 232, 9-19.
    18. Caswell, K. K.; Wilson, J. N.; Bunz, U. H.; Murphy, C. J., Preferential end-to-end assembly of gold nanorods by biotin-streptavidin connectors. J. Am. Chem. Soc. 2003, 125 (46), 13914-13915.
    19. Khanal, B. P.; Zubarev, E. R., Rings of nanorods. Angew Chem Int Ed Engl 2007, 46 (13), 2195-8.
    20. Takahashi, H.; Niidome, Y.; Niidome, T.; Kaneko, K.; Kawasaki, H.; Yamada, S., Modification of gold nanorods using phospatidylcholine to reduce cytotoxicity. Langmuir 2006, 22 (1), 2-5.
    21. Hauck, T. S.; Ghazani, A. A.; Chan, W. C., Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small 2008, 4 (1), 153-159.
    22. Kozlovskaya, V.; Kharlampieva, E.; Khanal, B. P.; Manna, P.; Zubarev, E. R.; Tsukruk, V. V., Ultrathin Layer-by-Layer Hydrogels with Incorporated Gold Nanorods as pH-Sensitive Optical Materials. Chem. Mater. 2008, 20 (24), 7474-7485.
    23. Huang, H. C.; Barua, S.; Kay, D. B.; Rege, K., Simultaneous Enhancement of Photothermal Stability and Gene Delivery Efficacy of Gold Nanorods Using Polyelectrolytes. ACS Nano 2009, 3 (10), 2941-2952.
    24. Huang, J. Y.; Jackson, K. S.; Murphy, C. J., Polyelectrolyte Wrapping Layers Control Rates of Photothermal Molecular Release from Gold Nanorods. Nano Lett. 2012, 12 (6), 2982-2987.
    25. Zarska, M.; Sramek, M.; Novotny, F.; Havel, F.; Babelova, A.; Mrazkova, B.; Benada, O.; Reinis, M.; Stepanek, I.; Musilek, K.; Bartek, J.; Ursinyova, M.; Novak, O.; Dzijak, R.; Kuca, K.; Proska, J.; Hodny, Z., Biological safety and tissue distribution of (16-mercaptohexadecyl)trimethylammonium bromide-modified cationic gold nanorods. Biomaterials 2018, 154 (Supplement C), 275-290.
    26. Hou, S.; Hu, X.; Wen, T.; Liu, W.; Wu, X., Core-shell noble metal nanostructures templated by gold nanorods. Adv. Mater. 2013, 25 (28), 3857-3862.
    27. Chaudhuri, R. G.; Paria, S., Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications. Chem. Rev. 2012, 112 (4), 2373-2433.
    28. Pastoriza-Santos, I.; Perez-Juste, J.; Liz-Marzan, L. M., Silica-coating and hydrophobation of CTAB-stabilized gold nanorods. Chem. Mater. 2006, 18 (10), 2465-2467.
    29. Gorelikov, I.; Matsuura, N., Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles. Nano. Lett. 2008, 8 (1), 369-373.
    30. Zhang, Z. J.; Wang, L. M.; Wang, J.; Jiang, X. M.; Li, X. H.; Hu, Z. J.; Ji, Y. H.; Wu, X. C.; Chen, C. Y., Mesoporous Silica-Coated Gold Nanorods as a Light-Mediated Multifunctional Theranostic Platform for Cancer Treatment. Adv. Mater. 2012, 24 (11), 1418-1423.
    31. Monem, A. S.; Elbialy, N.; Mohamed, N., Mesoporous silica coated gold nanorods loaded doxorubicin for combined chemo-photothermal therapy. Int. J. Pharm. 2014, 470 (1-2), 1-7.
    32. Raeesi, V.; Chou, L. Y. T.; Chan, W. C. W., Tuning the Drug Loading and Release of DNA-Assembled Gold-Nanorod Superstructures. Adv. Mater. 2016, 28 (38), 8511-8518.
    33. Chou, L. Y. T.; Zagorovsky, K.; Chan, W. C. W., DNA assembly of nanoparticle superstructures for controlled biological delivery and elimination. Nat. Nanotechnol. 2014, 9 (2), 148-155.
    34. Sun, M. Z.; Xu, L. G.; Ma, W.; Wu, X. L.; Kuang, H.; Wang, L. B.; Xu, C. L., Hierarchical Plasmonic Nanorods and Upconversion Core-Satellite Nanoassemblies for Multimodal Imaging-Guided Combination Phototherapy. Adv. Mater. 2016, 28 (5), 898-904.
    35. Nepal, D.; Drummy, L. F.; Biswas, S.; Park, K.; Vaia, R. A., Large Scale Solution Assembly of Quantum Dot-Gold Nanorod Architectures with Plasmon Enhanced Fluorescence. ACS Nano 2013, 7 (10), 9064-9074.
    36. Qiu, L. P.; Chen, T.; Ocsoy, I.; Yasun, E.; Wu, C. C.; Zhu, G. Z.; You, M. X.; Han, D.; Jiang, J. H.; Yu, R. Q.; Tan, W. H., A Cell-Targeted, Size-Photocontrollable, Nuclear-Uptake Nanodrug Delivery System for Drug-Resistant Cancer Therapy. Nano Lett. 2015, 15 (1), 457-463.
    37. Tenzer, S.; Docter, D.; Kuharev, J.; Musyanovych, A.; Fetz, V.; Hecht, R.; Schlenk, F.; Fischer, D.; Kiouptsi, K.; Reinhardt, C.; Landfester, K.; Schild, H.; Maskos, M.; Knauer, S. K.; Stauber, R. H., Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotechnol. 2013, 8 (10), 772-781.
    38. Mahmoudi, M.; Lohse, S. E.; Murphy, C. J.; Fathizadeh, A.; Montazeri, A.; Suslick, K. S., Variation of Protein Corona Composition of Gold Nanoparticles Following Plasmonic Heating. Nano Lett. 2014, 14 (1), 6-12.
    39. Mirsadeghi, S.; Dinarvand, R.; Ghahremani, M. H.; Hormozi-Nezhad, M. R.; Mahmoudi, Z.; Hajipour, M. J.; Atyabi, F.; Ghavami, M.; Mahmoudi, M., Protein corona composition of gold nanoparticles/nanorods affects amyloid beta fibrillation process. Nanoscale 2015, 7 (11), 5004-5013.
    40. Arunkumar, P.; Raju, B.; Vasantharaja, R.; Vijayaraghavan, S.; Preetham Kumar, B.; Jeganathan, K.; Premkumar, K., Near infra-red laser mediated photothermal and antitumor efficacy of doxorubicin conjugated gold nanorods with reduced cardiotoxicity in swiss albino mice. Nanomedicine 2015, 11 (6), 1435-1444.
    41. Iosin, M.; Toderas, F.; Baldeck, P. L.; Astilean, S., Study of protein-gold nanoparticle conjugates by fluorescence and surface-enhanced Raman scattering. J. Mol. Struct. 2009, 924, 196-200.
    42. Pan, B. F.; Cui, D. X.; Xu, P.; Li, Q.; Huang, T.; He, R.; Gao, F., Study on interaction between gold nanorod and bovine serum albumin. Colloid Surf. A 2007, 295 (1-3), 217-222.
    43. Kah, J. C. Y.; Chen, J.; Zubieta, A.; Hamad-Schifferli, K., Exploiting the Protein Corona around Gold Nanorods for Loading and Triggered Release. ACS Nano 2012, 6 (8), 6730-6740.
    44. Cifuentes-Rius, A.; de Puig, H.; Kah, J. C. Y.; Borros, S.; Hamad-Schifferli, K., Optimizing the Properties of the Protein Corona Surrounding Nanoparticles for Tuning Payload Release. ACS Nano 2013, 7 (11), 10066-10074.
    45. Kratz, F.; Elsadek, B., Clinical impact of serum proteins on drug delivery. J.Controlled Release 2012, 161 (2), 429-445.
    46. Pissuwan, D.; Valenzuela, S. M.; Killingsworth, M. C.; Xu, X. D.; Cortie, M. B., Targeted destruction of murine macrophage cells with bioconjugated gold nanorods. J. Nanopart Res. 2007, 9 (6), 1109-1124.
    47. Zhang, Z. J.; Wang, J.; Chen, C. Y., Gold Nanorods Based Platforms for Light-Mediated Theranostics. Theranostics 2013, 3 (3), 223-238.
    48. Hirsch, L. R.; Stafford, R. J.; Bankson, J. A.; Sershen, S. R.; Rivera, B.; Price, R. E.; Hazle, J. D.; Halas, N. J.; West, J. L., Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. U. S. A. 2003, 100 (23), 13549-13554.
    49. Huang, X. H.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A., Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 2006, 128 (6), 2115-2120.
    50. Ali, M. R. K.; Wu, Y.; Tang, Y.; Xiao, H. P.; Chen, K. C.; Han, T. G.; Fang, N.; Wu, R. H.; El-Sayed, M. A., Targeting cancer cell integrins using gold nanorods in photothermal therapy inhibits migration through affecting cytoskeletal proteins. Proc. Natl. Acad. Sci. U. S. A. 2017, 114 (28), E5655-E5663.
    51. Xu, C.; Yang, D.; Mei, L.; Li, Q.; Zhu, H.; Wang, T., Targeting chemophotothermal therapy of hepatoma by gold nanorods/graphene oxide core/shell nanocomposites. ACS Appl. Mater. Interfaces 2013, 5 (24), 12911-12920.
    52. Turcheniuk, K.; Dumych, T.; Bilyy, R.; Turcheniuk, V.; Bouckaert, J.; Vovk, V.; Chopyak, V.; Zaitsev, V.; Mariot, P.; Prevarskaya, N.; Boukherroub, R.; Szunerits, S., Plasmonic photothermal cancer therapy with gold nanorods/reduced graphene oxide core/shell nanocomposites. RSC Adv. 2016, 6 (2), 1600-1610.
    53. Moon, H.; Kumar, D.; Kim, H.; Sim, C.; Chang, J. H.; Kim, J. M.; Kim, H.; Lim, D. K., Amplified Photoacoustic Performance and Enhanced Photothermal Stability of Reduced Graphene Oxide Coated Gold Nanorods for Sensitive Photo acoustic Imaging. ACS Nano 2015, 9 (3), 2711-2719.
    54. Kim, J. W.; Galanzha, E. I.; Shashkov, E. V.; Moon, H. M.; Zharov, V. P., Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nat. Nanotechnol. 2009, 4 (10), 688-694.
    55. Kuo, W. S.; Chang, C. N.; Chang, Y. T.; Yang, M. H.; Chien, Y. H.; Chen, S. J.; Yeh, C. S., Gold Nanorods in Photodynamic Therapy, as Hyperthermia Agents, and in Near-Infrared Optical Imaging. Angew. Chem., Int. Ed. 2010, 49 (15), 2711-2715.
    56. Li, Z.; Huang, H.; Tang, S.; Li, Y.; Yu, X.-F.; Wang, H.; Li, P.; Sun, Z.; Zhang, H.; Liu, C.; Chu, P. K., Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy. Biomaterials 2016, 74, 144-154.
    57. Song, J. B.; Yang, X. Y.; Jacobson, O.; Huang, P.; Sun, X. L.; Lin, L. S.; Yan, X. F.; Niu, G.; Ma, Q. J.; Chen, X., Ultrasmall Gold Nanorod Vesicles with Enhanced Tumor Accumulation and Fast Excretion from the Body for Cancer Therapy. Adv. Mater. 2015, 27 (33), 4910-4917.
    58. Song, J. B.; Yang, X. Y.; Jacobson, O.; Lin, L. S.; Huang, P.; Niu, G.; Ma, Q. J.; Chen, X. Y., Sequential Drug Release and Enhanced Photothermal and Photoacoustic Effect of Hybrid Reduced Graphene Oxide-Loaded Ultrasmall Gold Nanorod Vesicles for Cancer Therapy. ACS Nano 2015, 9 (9), 9199-9209.
    59. Huang, X. H.; Jain, P. K.; El-Sayed, I. H.; El-Sayed, M. A., Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles. Photochem. Photobiol. 2006, 82 (2), 412-417.
    60. Jain, S.; Hirst, D. G.; O'Sullivan, J. M., Gold nanoparticles as novel agents for cancer therapy. Br. J. Radiol. 2012, 85 (1010), 101-113.
    61. Aioub, M.; Panikkanvalappi, S. R.; El-Sayed, M. A., Platinum-Coated Gold Nanorods: Efficient Reactive Oxygen Scavengers That Prevent Oxidative Damage toward Healthy, Untreated Cells during Plasmonic Photothermal Therapy. ACS Nano 2017, 11 (1), 579-586.
    62. Wang, B. K.; Yu, X. F.; Wang, J. H.; Li, Z. B.; Li, P. H.; Wang, H.; Song, L.; Chu, P. K.; Li, C., Gold-nanorods-siRNA nanoplex for improved photothermal therapy by gene silencing. Biomaterials 2016, 78, 27-39.
    63. Ali, M. R.; Ali, H. R.; Rankin, C. R.; El-Sayed, M. A., Targeting heat shock protein 70 using gold nanorods enhances cancer cell apoptosis in low dose plasmonic photothermal therapy. Biomaterials 2016, 102, 1-8.
    64. Wang, F. H.; Shen, Y. Y.; Zhang, W. J.; Li, M.; Wang, Y.; Zhou, D. J.; Guo, S. R., Efficient, dual-stimuli responsive cytosolic gene delivery using a RGD modified disulfide-linked polyethylenimine functionalized gold nanorod. J.Controlled Release 2014, 196, 37-51.
    65. Chen, W. H.; Luo, G. F.; Lei, Q.; Hong, S.; Qiu, W. X.; Liu, L. H.; Cheng, S. X.; Zhang, X. Z., Overcoming the Heat Endurance of Tumor Cells by Interfering with the Anaerobic Glycolysis Metabolism for Improved Photothermal Therapy. ACS Nano 2017, 11 (2), 1419-1431.
    66. Wei, Q. S.; Ji, J.; Shen, J. C., Synthesis of near-infrared responsive gold nanorod/PNIPAAm core/shell nanohybrids via surface initiated ATRP for smart drug delivery. Macromol. Rapid. Commun. 2008, 29 (8), 645-650.
    67. Liao, J. F.; Li, W. T.; Peng, J. R.; Yang, Q.; Li, H.; Wei, Y. Q.; Zhang, X. N.; Qian, Z. Y., Combined Cancer Photothermal-Chemotherapy Based on Doxorubicin/Gold Nanorod-Loaded Polymersomes. Theranostics 2015, 5 (4), 345-356.
    68. Zhong, Y. N.; Wang, C.; Cheng, L.; Meng, F. H.; Zhong, Z. Y.; Liu, Z., Gold Nanorod-Cored Biodegradable Micelles as a Robust and Remotely Controllable Doxorubicin Release System for Potent Inhibition of Drug-Sensitive and -Resistant Cancer Cells. Biomacromolecules 2013, 14 (7), 2411-2419.
    69. Hauck, T. S.; Jennings, T. L.; Yatsenko, T.; Kumaradas, J. C.; Chan, W. C. W., Enhancing the Toxicity of Cancer Chemotherapeutics with Gold Nanorod Hyperthermia. Adv. Mater. 2008, 20 (20), 3832-3838.
    70. Agarwal, A.; Mackey, M. A.; El-Sayed, M. A.; Bellamkonda, R. V., Remote Triggered Release of Doxorubicin in Tumors by Synergistic Application of Thermosensitive Liposomes and Gold Nanorods. ACS Nano 2011, 5 (6), 4919-4926.
    71. Pacardo, D. B.; Neupane, B.; Rikard, S. M.; Lu, Y.; Mo, R.; Mishra, S. R.; Tracy, J. B.; Wang, G.; Ligler, F. S.; Gu, Z., A dual wavelength-activatable gold nanorod complex for synergistic cancer treatment. Nanoscale 2015, 7 (28), 12096-12103.
    72. von Maltzahn, G.; Park, J. H.; Agrawal, A.; Bandaru, N. K.; Das, S. K.; Sailor, M. J.; Bhatia, S. N., Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res. 2009, 69 (9), 3892-3900.
    73. El-Sayed, I. H.; Huang, X. H.; El-Sayed, M. A., Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer. Nano Lett. 2005, 5 (5), 829-834.
    74. Troutman, T. S.; Barton, J. K.; Romanowski, M., Optical coherence tomography with plasmon resonant nanorods of gold. Opt. Lett. 2007, 32 (11), 1438-1440.
    75. Tucker-Schwartz, J. M.; Meyer, T. A.; Patil, C. A.; Duvall, C. L.; Skala, M. C., In vivo photothermal optical coherence tomography of gold nanorod contrast agents. Biomed. Opt. Express 2012, 3 (11), 2881-2895.
    76. von Maltzahn, G.; Centrone, A.; Park, J. H.; Ramanathan, R.; Sailor, M. J.; Hatton, T. A.; Bhatia, S. N., SERS-Coded Gold Nanorods as a Multifunctional Platform for Densely Multiplexed Near-infrared Imaging and Photothermal Heating. Adv. Mater. 2009, 21 (31), 3175-3180.
    77. Liu, Y.; Yang, M.; Zhang, J.; Zhi, X.; Li, C.; Zhang, C.; Pan, F.; Wang, K.; Yang, Y.; Martinez de la Fuentea, J.; Cui, D., Human Induced Pluripotent Stem Cells for Tumor Targeted Delivery of Gold Nanorods and Enhanced Photothermal Therapy. ACS Nano 2016, 10 (2), 2375-2385.
    78. Liba, O.; SoRelle, E. D.; Sen, D.; de la Zerda, A., Contrast-enhanced optical coherence tomography with picomolar sensitivity for functional in vivo imaging. Sci. Rep. 2016, 6, 23337-23348.
    79. Nima, Z. A.; Mahmood, M.; Xu, Y.; Mustafa, T.; Watanabe, F.; Nedosekin, D. A.; Juratli, M. A.; Fahmi, T.; Galanzha, E. I.; Nolan, J. P.; Basnakian, A. G.; Zharov, V. P.; Biris, A. S., Circulating tumor cell identification by functionalized silver-gold nanorods with multicolor, super-enhanced SERS and photothermal resonances. Sci. Rep. 2014, 4, 4752-4759.
    80. Park, H.; Lee, S.; Chen, L.; Lee, E. K.; Shin, S. Y.; Lee, Y. H.; Son, S. W.; Oh, C. H.; Song, J. M.; Kang, S. H.; Choo, J., SERS imaging of HER2-overexpressed MCF7 cells using antibody-conjugated gold nanorods. Phys. Chem. Chem. Phys. 2009, 11 (34), 7444-7449.
    81. Wang, L. H. V.; Hu, S., Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs. Science 2012, 335 (6075), 1458-1462.
    82. Wang, P. H.; Liu, H. L.; Hsu, P. H.; Lin, C. Y.; Wang, C. R. C.; Chen, P. Y.; Wei, K. C.; Yen, T. C.; Li, M. L., Gold-nanorod contrast-enhanced photoacoustic micro-imaging of focused-ultrasound induced blood-brain-barrier opening in a rat model. J. Biomed. Opt. 2012, 17 (6), 061222.
    83. Jokerst, J. V.; Thangaraj, M.; Kempen, P. J.; Sinclair, R.; Gambhir, S. S., Photoacoustic Imaging of Mesenchymal Stem Cells in Living Mice via Silica-Coated Gold Nanorods. ACS Nano 2012, 6 (7), 5920-5930.
    84. Chen, Y. S.; Frey, W.; Kim, S.; Kruizinga, P.; Homan, K.; Emelianov, S., Silica-Coated Gold Nanorods as Photoacoustic Signal Nanoamplifiers. Nano Lett. 2011, 11 (2), 348-354.
    85. Bayer, C. L.; Nam, S. Y.; Chen, Y. S.; Emelianov, S. Y., Photoacoustic signal amplification through plasmonic nanoparticle aggregation. J. Biomed. Opt. 2013, 18 (1) 016001.
    86. Liu, X. J.; Gonzalez, M. G.; Niessner, R.; Haisch, C., Strong size-dependent photoacoustic effect on gold nanoparticles: a sensitive tool for aggregation-based colorimetric protein detection. Anal. Methods 2012, 4 (1), 309-311.
    87. SUDLOW, G.; BIRKETT, D. J.; WADE, D. N., Further Characterization of Specific Drug Binding Sites on Human Serum Albumin. Mol. Pharmacol. 1976, 12 (6), 1052-1061.
    88. SUDLOW, G.; BIRKETT, D. J.; WADE, D. N., The Characterization of Two Specific Drug Binding Sites on Human Serum Albumin. Mol. Pharmacol. 1975, 11 (6), 824-832.
    89. Chen, Q.; Liu, Z., Albumin Carriers for Cancer Theranostics: A Conventional Platform with New Promise. Adv. Mater. 2016, 28 (47), 10557-10566.
    90. Elzoghby, A. O.; Samy, W. M.; Elgindy, N. A., Albumin-based nanoparticles as potential controlled release drug delivery systems. J. Controlled Release 2012, 157 (2), 168-82.
    91. Morales, J., Defining the role of insulin detemir in Basal insulin therapy. Drugs 2007, 67 (17), 2557-84.
    92. Garg, S. K., The role of basal insulin and glucagon-like peptide-1 agonists in the therapeutic management of type 2 diabetes--a comprehensive review. Diabetes Technol. Ther. 2010, 12 (1), 11-24.
    93. Sparreboom, A.; Scripture, C. D.; Trieu, V.; Williams, P. J.; De, T.; Yang, A.; Beals, B.; Figg, W. D.; Hawkins, M.; Desai, N., Comparative Preclinical and Clinical Pharmacokinetics of a Cremophor-Free, Nanoparticle Albumin-Bound Paclitaxel (ABI-007) and Paclitaxel Formulated in Cremophor (Taxol). Clin. Cancer Res. 2005, 11 (11), 4136-4143.
    94. Gradishar, W. J.; Tjulandin, S.; Davidson, N.; Shaw, H.; Desai, N.; Bhar, P.; Hawkins, M.; O'Shaughnessy, J., Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J. Clin. Oncol. 2005, 23 (31), 7794-7803.
    95. Hawkins, M. J.; Soon-Shiong, P.; Desai, N., Protein nanoparticles as drug carriers in clinical medicine. Adv. Drug Delivery Rev. 2008, 60 (8), 876-885.
    96. Elsadek, B.; Kratz, F., Impact of albumin on drug delivery--new applications on the horizon. J. Controlled Release 2012, 157 (1), 4-28.
    97. Nelson, D. R.; Benhamou, Y.; Chuang, W. L.; Lawitz, E. J.; Rodriguez-Torres, M.; Flisiak, R.; Rasenack, J. W. F.; Kryczka, W.; Lee, C. M.; Bain, V. G.; Pianko, S.; Patel, K.; Cronin, P. W.; Pulkstenis, E.; Subramanian, G. M.; Mchutchison, J. G.; Team, A. S., Albinterferon Alfa-2b Was Not Inferior to Pegylated Interferon-alpha in a Randomized Trial of Patients With Chronic Hepatitis C Virus Genotype 2 or 3. Gastroenterology 2010, 139 (4), 1267-1276.
    98. Kratz, F., Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles. J. of Controlled Release 2008, 132 (3), 171-183.
    99. Jeong, H.; Huh, M.; Lee, S. J.; Koo, H.; Kwon, I. C.; Jeong, S. Y.; Kim, K., Photosensitizer-conjugated human serum albumin nanoparticles for effective photodynamic therapy. Theranostics 2011, 1, 230-239.
    100. Sheng, Z.; Hu, D.; Zheng, M.; Zhao, P.; Liu, H.; Gao, D.; Gong, P.; Gao, G.; Zhang, P.; Ma, Y.; Cai, L., Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided cancer synergistic phototherapy. ACS Nano 2014, 8 (12), 12310-12322.
    101. Chen, Q.; Wang, X.; Wang, C.; Feng, L. Z.; Li, Y. G.; Liu, Z., Drug-Induced Self-Assembly of Modified Albumins as Nano-theranostics for Tumor-Targeted Combination Therapy. ACS Nano 2015, 9 (5), 5223-5233.
    102. Xu, R.; Fisher, M.; Juliano, R. L., Targeted albumin-based nanoparticles for delivery of amphipathic drugs. Bioconjugate Chem. 2011, 22 (5), 870-878.
    103. Lin, T.; Zhao, P.; Jiang, Y.; Tang, Y.; Jin, H.; Pan, Z.; He, H.; Yang, V. C.; Huang, Y., Blood-Brain-Barrier-Penetrating Albumin Nanoparticles for Biomimetic Drug Delivery via Albumin-Binding Protein Pathways for Antiglioma Therapy. ACS Nano 2016, 10 (11), 9999-10012.
    104. Zhao, P.; Yin, W.; Wu, A.; Tang, Y.; Wang, J.; Pan, Z.; Lin, T.; Zhang, M.; Chen, B.; Duan, Y.; Huang, Y., Dual-Targeting to Cancer Cells and M2 Macrophages via Biomimetic Delivery of Mannosylated Albumin Nanoparticles for Drug-Resistant Cancer Therapy. Adv. Funct. Mater. 2017, 27 (44), 1700403.
    105. Chen, Q.; Liu, X.; Chen, J.; Zeng, J.; Cheng, Z.; Liu, Z., A Self-Assembled Albumin-Based Nanoprobe for In Vivo Ratiometric Photoacoustic pH Imaging. Adv. Mater. 2015, 27 (43), 6820-6827.
    106. Hanaki, K.; Momo, A.; Oku, T.; Komoto, A.; Maenosono, S.; Yamaguchi, Y.; Yamamoto, K., Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker. Biochem. Biophys. Res. Commun. 2003, 302 (3), 496-501.
    107. Yu, J.; Ju, Y.; Zhao, L.; Chu, X.; Yang, W.; Tian, Y.; Sheng, F.; Lin, J.; Liu, F.; Dong, Y.; Hou, Y., Multistimuli-Regulated Photochemothermal Cancer Therapy Remotely Controlled via Fe5C2 Nanoparticles. ACS Nano 2016, 10 (1), 159-169.
    108. Wu, Y. Z.; Chakrabortty, S.; Gropeanu, R. A.; Wilhelmi, J.; Xu, Y.; Er, K. S.; Kuan, S. L.; Koynov, K.; Chan, Y.; Weil, T., pH-Responsive Quantum Dots via an Albumin Polymer Surface Coating. J. Am. Chem. Soc. 2010, 132 (14), 5012-5014.
    109. Khullar, P.; Singh, V.; Mahal, A.; Dave, P. N.; Thakur, S.; Kaur, G.; Singh, J.; Kamboj, S. S.; Bakshi, M. S., Bovine Serum Albumin Bioconjugated Gold Nanoparticles: Synthesis, Hemolysis, and Cytotoxicity toward Cancer Cell Lines. J. Phys. Chem. C 2012, 116 (15), 8834-8843.
    110. Shi, H. Y.; Wang, Z. M.; Huang, C. S.; Gu, X. L.; Jia, T.; Zhang, A. M.; Wu, Z. Y.; Zhu, L.; Luo, X. F.; Zhao, X. S.; Jia, N. Q.; Miao, F., A Functional CT Contrast Agent for In Vivo Imaging of Tumor Hypoxia. Small 2016, 12 (29), 3995-4006.
    111. Xie, J.; Zheng, Y.; Ying, J. Y., Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 2009, 131 (3), 888-889.
    112. Le Guevel, X.; Hotzer, B.; Jung, G.; Hollemeyer, K.; Trouillet, V.; Schneider, M., Formation of Fluorescent Metal (Au, Ag) Nanoclusters Capped in Bovine Serum Albumin Followed by Fluorescence and Spectroscopy. J. Phys. Chem. C 2011, 115 (22), 10955-10963.
    113. Retnakumari, A.; Setua, S.; Menon, D.; Ravindran, P.; Muhammed, H.; Pradeep, T.; Nair, S.; Koyakutty, M., Molecular-receptor-specific, non-toxic, near-infrared-emitting Au cluster-protein nanoconjugates for targeted cancer imaging. Nanotechnology 2010, 21 (5), 055103.
    114. Croissant, J. G.; Zhang, D.; Alsaiari, S.; Lu, J.; Deng, L.; Tamanoi, F.; AlMalik, A. M.; Zink, J. I.; Khashab, N. M., Protein-gold clusters-capped mesoporous silica nanoparticles for high drug loading, autonomous gemcitabine/doxorubicin co-delivery, and in-vivo tumor imaging. J. Controlled Release 2016, 229, 183-191.
    115. Wang, Y.; Yang, T.; Ke, H.; Zhu, A.; Wang, Y.; Wang, J.; Shen, J.; Liu, G.; Chen, C.; Zhao, Y.; Chen, H., Smart Albumin-Biomineralized Nanocomposites for Multimodal Imaging and Photothermal Tumor Ablation. Adv. Mater. 2015, 27 (26), 3874-3882.
    116. Wang, Y.; Wu, Y. Y.; Liu, Y. J.; Shen, J.; Lv, L.; Li, L. B.; Yang, L. C.; Zeng, J. F.; Wang, Y. Y.; Zhang, L. S. W.; Li, Z.; Gao, M. Y.; Chai, Z. F., BSA-Mediated Synthesis of Bismuth Sulfide Nanotheranostic Agents for Tumor Multimodal Imaging and Thermoradiotherapy. Adv. Func. Mater. 2016, 26 (29), 5335-5344.
    117. Tang, Y. a.; Yang, T.; Wang, Q.; Lv, X.; Song, X.; Ke, H.; Guo, Z.; Huang, X.; Hu, J.; Li, Z.; Yang, P.; Yang, X.; Chen, H., Albumin-coordinated assembly of clearable platinum nanodots for photo-induced cancer theranostics. Biomaterials 2018, 154 (Supplement C), 248-260.
    118. Ge, J.; Lei, J. D.; Zare, R. N., Protein-inorganic hybrid nanoflowers. Nat. Nanotechnol. 2012, 7 (7), 428-432.
    119. Cao, H. M.; Yang, D. P.; Ye, D. X.; Zhang, X. X.; Fang, X. E.; Zhang, S.; Liu, B. H.; Kong, J. L., Protein-inorganic hybrid nanoflowers as ultrasensitive electrochemical cytosensing Interfaces for evaluation of cell surface sialic acid. Biosens. Bioelectron. 2015, 68, 329-335.
    120. Liu, J. B.; Fu, S. H.; Yuan, B.; Li, Y. L.; Deng, Z. X., Toward a Universal "Adhesive Nanosheet" for the Assembly of Multiple Nanoparticles Based on a Protein-Induced Reduction/Decoration of Graphene Oxide. J. Am. Chem. Soc. 2010, 132 (21), 7279-7281.
    121. Cheon, Y. A.; Bae, J. H.; Chung, B. G., Reduced Graphene Oxide Nanosheet for Chemo-photothermal Therapy. Langmuir 2016, 32 (11), 2731-2736.
    122. Peralta, D. V.; He, J. B.; Wheeler, D. A.; Zhang, J. Z.; Tarr, M. A., Encapsulating gold nanomaterials into size-controlled human serum albumin nanoparticles for cancer therapy platforms. J. Microencapsulation 2014, 31 (8), 824-831.
    123. Peralta, D. V.; Heidari, Z.; Dash, S.; Tarr, M. A., Hybrid Paclitaxel and Gold Nanorod-Loaded Human Serum Albumin Nanoparticles for Simultaneous Chemotherapeutic and Photothermal Therapy on 4T1 Breast Cancer Cells. ACS Appl. Mater. Interfaces 2015, 7 (13), 7101-7111.
    124. Choi, J. H.; Hwang, H. J.; Shin, S. W.; Choi, J. W.; Um, S. H.; Oh, B. K., A novel albumin nanocomplex containing both small interfering RNA and gold nanorods for synergetic anticancer therapy. Nanoscale 2015, 7 (20), 9229-9237.
    125. Matsumura, Y.; Maeda, H., A New Concept for Macromolecular Therapeutics in Cancer-Chemotherapy - Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs. Cancer Res. 1986, 46 (12), 6387-6392.
    126. Blanco, E.; Shen, H.; Ferrari, M., Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33 (9), 941-951.
    127. Kobayashi, H.; Watanabe, R.; Choyke, P. L., Improving Conventional Enhanced Permeability and Retention (EPR) Effects; What Is the Appropriate Target? Theranostics 2014, 4 (1), 81-89.
    128. Shi, J.; Kantoff, P. W.; Wooster, R.; Farokhzad, O. C., Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 2017, 17 (1), 20-37.
    129. Nel, A. E.; Madler, L.; Velegol, D.; Xia, T.; Hoek, E. M. V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M., Understanding biophysicochemical interactions at the nano-bio interface. Nature Mater. 2009, 8 (7), 543-557.
    130. Saha, K.; Rahimi, M.; Yazdani, M.; Kim, S. T.; Moyano, D. F.; Hou, S.; Das, R.; Mout, R.; Rezaee, F.; Mahmoudi, M.; Rotello, V. M., Regulation of Macrophage Recognition through the Interplay of Nanoparticle Surface Functionality and Protein Corona. ACS Nano 2016, 10 (4), 4421-4430.
    131. Johnston, B. D.; Kreyling, W. G.; Pfeiffer, C.; Schäffler, M.; Sarioglu, H.; Ristig, S.; Hirn, S.; Haberl, N.; Thalhammer, S.; Hauck, S. M.; Semmler-Behnke, M.; Epple, M.; Hühn, J.; Del Pino, P.; Parak, W. J., Colloidal Stability and Surface Chemistry Are Key Factors for the Composition of the Protein Corona of Inorganic Gold Nanoparticles. Adv. Func. Mater. 2017, 27 (42), 1701956.
    132. Lundqvist, M.; Stigler, J.; Elia, G.; Lynch, I.; Cedervall, T.; Dawson, K. A., Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. U. S. A. 2008, 105 (38), 14265-14270.
    133. Soo Choi, H.; Liu, W.; Misra, P.; Tanaka, E.; Zimmer, J. P.; Itty Ipe, B.; Bawendi, M. G.; Frangioni, J. V., Renal clearance of quantum dots. Nat. Biotechnol. 2007, 25 (10), 1165-1170.
    134. Ji, R. C., Characteristics of lymphatic endothelial cells in physiological and pathological conditions. Histol. Histopathol. 2005, 20 (1), 155-175.
    135. Huang, W. C.; Chiang, W. H.; Cheng, Y. H.; Lin, W. C.; Yu, C. F.; Yen, C. Y.; Yeh, C. K.; Chern, C. S.; Chiang, C. S.; Chiu, H. C., Tumortropic monocyte-mediated delivery of echogenic polymer bubbles and therapeutic vesicles for chemotherapy of tumor hypoxia. Biomaterials 2015, 71, 71-83.
    136. Holback, H.; Yeo, Y., Intratumoral Drug Delivery with Nanoparticulate Carriers. Pharm. Res. 2011, 28 (8), 1819-1830.
    137. Sykes, E. A.; Chen, J.; Zheng, G.; Chan, W. C. W., Investigating the Impact of Nanoparticle Size on Active and Passive Tumor Targeting Efficiency. ACS Nano 2014, 8 (6), 5696-5706.
    138. Lee, H.; Fonge, H.; Hoang, B.; Reilly, R. M.; Allen, C., The Effects of Particle Size and Molecular Targeting on the Intratumoral and Subcellular Distribution of Polymeric Nanoparticles. Mol. Pharmaceutics 2010, 7 (4), 1195-1208.
    139. Hansen, A. E.; Petersen, A. L.; Henriksen, J. R.; Boerresen, B.; Rasmussen, P.; Elema, D. R.; af Rosenschold, P. M.; Kristensen, A. T.; Kjaer, A.; Andresen, T. L., Positron Emission Tomography Based Elucidation of the Enhanced Permeability and Retention Effect in Dogs with Cancer Using Copper-64 Liposomes. ACS Nano 2015, 9 (7), 6985-6995.
    140. Harrington, K. J.; Mohammadtaghi, S.; Uster, P. S.; Glass, D.; Peters, A. M.; Vile, R. G.; Stewart, J. S. W., Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. Clin. Cancer Res. 2001, 7 (2), 243-254.
    141. Taurin, S.; Nehoff, H.; Greish, K., Anticancer nanomedicine and tumor vascular permeability; Where is the missing link? J. Controlled Release 2012, 164 (3), 265-275.
    142. Perry, J. L.; Reuter, K. G.; Luft, J. C.; Pecot, C. V.; Zamboni, W.; DeSimone, J. M., Mediating Passive Tumor Accumulation through Particle Size, Tumor Type, and Location. Nano Lett. 2017, 17 (5), 2879-2886.
    143. Durymanov, M. O.; Rosenkranz, A. A.; Sobolev, A. S., Current Approaches for Improving Intratumoral Accumulation and Distribution of Nanomedicines. Theranostics 2015, 5 (9), 1007-1020.
    144. Chen, H. M.; Zhang, W. Z.; Zhu, G. Z.; Xie, J.; Chen, X. Y., Rethinking cancer nanotheranostics. Nat. Rev. Mater. 2017, 2 (7), 17024.
    145. Yao, C.; Wang, P.; Zhou, L.; Wang, R.; Li, X.; Zhao, D.; Zhang, F., Highly biocompatible zwitterionic phospholipids coated upconversion nanoparticles for efficient bioimaging. Anal. Chem. 2014, 86 (19), 9749-9757.
    146. Hamidi, M.; Azadi, A.; Rafiei, P., Pharmacokinetic consequences of pegylation. Drug Delivery 2006, 13 (6), 399-409.
    147. Rodriguez, P. L.; Harada, T.; Christian, D. A.; Pantano, D. A.; Tsai, R. K.; Discher, D. E., Minimal "Self" Peptides That Inhibit Phagocytic Clearance and Enhance Delivery of Nanoparticles. Science 2013, 339 (6122), 971-975.
    148. Cao, H. Q.; Zou, L. L.; He, B.; Zeng, L. J.; Huang, Y. Z.; Yu, H. J.; Zhang, P. C.; Yin, Q.; Zhang, Z. W.; Li, Y. P., Albumin Biomimetic Nanocorona Improves Tumor Targeting and Penetration for Synergistic Therapy of Metastatic Breast Cancer. Adv. Func. Mater. 2017, 27 (11), 1605679.
    149. Maeda, H.; Nakamura, H.; Fang, J., The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Delivery Rev. 2013, 65 (1), 71-79.
    150. Matsumoto, Y.; Nichols, J. W.; Toh, K.; Nomoto, T.; Cabral, H.; Miura, Y.; Christie, R. J.; Yamada, N.; Ogura, T.; Kano, M. R.; Matsumura, Y.; Nishiyama, N.; Yamasoba, T.; Bae, Y. H.; Kataoka, K., Vascular bursts enhance permeability of tumour blood vessels and improve nanoparticle delivery. Nat. Nanotechnol. 2016, 11 (6), 533-538.
    151. Chen, F.; Cai, W., Tumor vasculature targeting: a generally applicable approach for functionalized nanomaterials. Small 2014, 10 (10), 1887-1893.
    152. Chauhan, V. P.; Stylianopoulos, T.; Martin, J. D.; Popovic, Z.; Chen, O.; Kamoun, W. S.; Bawendi, M. G.; Fukumura, D.; Jain, R. K., Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat. Nanotechnol. 2012, 7 (6), 383-388.
    153. Cyran, C. C.; Sennino, B.; Fu, Y.; Rogut, V.; Shames, D. M.; Chaopathomkul, B.; Wendland, M. F.; McDonald, D. M.; Brasch, R. C.; Raatschen, H. J., Permeability to macromolecular contrast media quantified by dynamic MRI correlates with tumor tissue assays of vascular endothelial growth factor (VEGF). Eur. J. Radiol. 2012, 81 (5), 891-896.
    154. Jiang, W.; Huang, Y.; An, Y.; Kim, B. Y., Remodeling Tumor Vasculature to Enhance Delivery of Intermediate-Sized Nanoparticles. ACS Nano 2015, 9 (9), 8689-8696.
    155. Fang, J.; Nakamura, H.; Maeda, H., The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Delivery Rev. 2011, 63 (3), 136-151.
    156. Brudno, Y.; Silva, E. A.; Kearney, C. J.; Lewin, S. A.; Miller, A.; Martinick, K. D.; Aizenberg, M.; Mooney, D. J., Refilling drug delivery depots through the blood. Proc. Natl. Acad. Sci. U. S. A. 2014, 111 (35), 12722-12727.
    157. Sun, X. L.; Yan, X. F.; Jacobson, O.; Sun, W. J.; Wang, Z. T.; Tong, X.; Xia, Y. Q.; Ling, D. S.; Chen, X. Y., Improved Tumor Uptake by Optimizing Liposome Based RES Blockade Strategy. Theranostics 2017, 7 (2), 319-328.
    158. Plank, C.; Zelphati, O.; Mykhaylyk, O., Magnetically enhanced nucleic acid delivery. Ten years of magnetofection-progress and prospects. Adv. Drug Delivery Rev. 2011, 63 (14-15), 1300-1331.
    159. Kirui, D. K.; Koay, E. J.; Guo, X. J.; Cristini, V.; Shen, H. F.; Ferrari, M., Tumor vascular permeabilization using localized mild hyperthermia to improve macromolecule transport. Nanomedicine 2014, 10 (7), 1487-1496.
    160. Sano, K.; Nakajima, T.; Choyke, P. L.; Kobayashi, H., Markedly enhanced permeability and retention effects induced by photo-immunotherapy of tumors. ACS Nano 2013, 7 (1), 717-724.
    161. Kobayashi, H.; Choyke, P. L., Super enhanced permeability and retention (SUPR) effects in tumors following near infrared photoimmunotherapy. Nanoscale 2016, 8 (25), 12504-12509.
    162. Gormley, A. J.; Larson, N.; Sadekar, S.; Robinson, R.; Ray, A.; Ghandehari, H., Guided delivery of polymer therapeutics using plasmonic photothermal therapy. Nano Today 2012, 7 (3), 158-167.
    163. von Maltzahn, G.; Park, J. H.; Lin, K. Y.; Singh, N.; Schwoppe, C.; Mesters, R.; Berdel, W. E.; Ruoslahti, E.; Sailor, M. J.; Bhatia, S. N., Nanoparticles that communicate in vivo to amplify tumour targeting. Nature Mater. 2011, 10 (7), 545-552.
    164. Ahmed, M.; Monsky, W. E.; Girnun, G.; Lukyanov, A.; D'Ippolito, G.; Kruskal, J. B.; Stuart, K. E.; Torchilin, V. P.; Goldberg, S. N., Radiofrequency thermal ablation sharply increases intratumoral liposomal doxorubicin accumulation and tumor coagulation. Cancer Res. 2003, 63 (19), 6327-6333.
    165. Li, L.; ten Hagen, T. L.; Bolkestein, M.; Gasselhuber, A.; Yatvin, J.; van Rhoon, G. C.; Eggermont, A. M.; Haemmerich, D.; Koning, G. A., Improved intratumoral nanoparticle extravasation and penetration by mild hyperthermia. J Control Release 2013, 167 (2), 130-137.
    166. Dreher, M. R.; Liu, W.; Michelich, C. R.; Dewhirst, M. W.; Chilkoti, A., Thermal cycling enhances the accumulation of a temperature-sensitive biopolymer in solid tumors. Cancer Res. 2007, 67 (9), 4418-4424.
    167. Kunjachan, S.; Detappe, A.; Kumar, R.; Ireland, T.; Cameron, L.; Biancur, D. E.; Motto-Ros, V.; Sancey, L.; Sridhar, S.; Makrigiorgos, G. M.; Berbeco, R. I., Nanoparticle Mediated Tumor Vascular Disruption: A Novel Strategy in Radiation Therapy. Nano Lett. 2015, 15 (11), 7488-7496.
    168. Lai, C. Y.; Fite, B. Z.; Ferrara, K. W., Ultrasonic enhancement of drug penetration in solid tumors. Front. Oncol. 2013, 3, 204.
    169. Mo, S.; Carlisle, R.; Laga, R.; Myers, R.; Graham, S.; Cawood, R.; Ulbrich, K.; Seymour, L.; Coussios, C. C., Increasing the density of nanomedicines improves their ultrasound-mediated delivery to tumours. J. Controlled Release 2015, 210, 10-18.
    170. Delcea, M.; Sternberg, N.; Yashchenok, A. M.; Georgieva, R.; Baumler, H.; Mohwald, H.; Skirtach, A. G., Nanoplasmonics for Dual-Molecule Release through Nanopores in the Membrane of Red Blood Cells. ACS Nano 2012, 6 (5), 4169-4180.
    171. Mooney, R.; Roma, L.; Zhao, D.; Van Haute, D.; Garcia, E.; Kim, S. U.; Annala, A. J.; Aboody, K. S.; Berlin, J. M., Neural Stem Cell-Mediated Intratumoral Delivery of Gold Nanorods Improves Photothermal Therapy. ACS Nano 2014, 8 (12), 12450-12460.
    172. Cheng, Y.; Morshed, R.; Cheng, S. H.; Tobias, A.; Auffinger, B.; Wainwright, D. A.; Zhang, L. J.; Yunis, C.; Han, Y.; Chen, C. T.; Lo, L. W.; Aboody, K. S.; Ahmed, A. U.; Lesniak, M. S., Nanoparticle-Programmed Self-Destructive Neural Stem Cells for Glioblastoma Targeting and Therapy. Small 2013, 9 (24), 4123-4129.
    173. Huang, W. C.; Shen, M. Y.; Chen, H. H.; Lin, S. C.; Chiang, W. H.; Wu, P. H.; Chang, C. W.; Chiang, C. S.; Chiu, H. C., Monocytic delivery of therapeutic oxygen bubbles for dual-modality treatment of tumor hypoxia. J. Controlled Release 2015, 220, 738-750.
    174. Ikehara, Y.; Niwa, T.; Biao, L.; Ikehara, S. K.; Ohashi, N.; Kobayashi, T.; Shimizu, Y.; Kojima, N.; Nakanishi, H., A Carbohydrate Recognition–Based Drug Delivery and Controlled Release System using Intraperitoneal Macrophages as a Cellular Vehicle. Cancer Res. 2006, 66 (17), 8740-8748.
    175. Smith, B. R.; Ghosn, E. E.; Rallapalli, H.; Prescher, J. A.; Larson, T.; Herzenberg, L. A.; Gambhir, S. S., Selective uptake of single-walled carbon nanotubes by circulating monocytes for enhanced tumour delivery. Nat. Nanotechnol. 2014, 9 (6), 481-487.
    176. Choi, J.; Kim, H. Y.; Ju, E. J.; Jung, J.; Park, J.; Chung, H.-K.; Lee, J. S.; Lee, J. S.; Park, H. J.; Song, S. Y.; Jeong, S. Y.; Choi, E. K., Use of macrophages to deliver therapeutic and imaging contrast agents to tumors. Biomaterials 2012, 33 (16), 4195-4203.
    177. Mooney, R.; Weng, Y.; Garcia, E.; Bhojane, S.; Smith-Powell, L.; Kim, S. U.; Annala, A. J.; Aboody, K. S.; Berlin, J. M., Conjugation of pH-responsive nanoparticles to neural stem cells improves intratumoral therapy. J. Controlled Release 2014, 191, 82-89.
    178. Rachakatla, R. S.; Balivada, S.; Seo, G. M.; Myers, C. B.; Wang, H.; Samarakoon, T. N.; Dani, R.; Pyle, M.; Kroh, F. O.; Walker, B.; Leaym, X.; Koper, O. B.; Chikan, V.; Bossmann, S. H.; Tamura, M.; Troyer, D. L., Attenuation of mouse melanoma by A/C magnetic field after delivery of bi-magnetic nanoparticles by neural progenitor cells. ACS Nano 2010, 4 (12), 7093-7104.
    179. Li, L.; Guan, Y.; Liu, H.; Hao, N.; Liu, T.; Meng, X.; Fu, C.; Li, Y.; Qu, Q.; Zhang, Y.; Ji, S.; Chen, L.; Chen, D.; Tang, F., Silica Nanorattle–Doxorubicin-Anchored Mesenchymal Stem Cells for Tumor-Tropic Therapy. ACS Nano 2011, 5 (9), 7462-7470.
    180. Kang, S.; Lee, J.; Ryu, S.; Kwon, Y.; Kim, K. H.; Jeong, D. H.; Paik, S. R.; Kim, B. S., Gold Nanoparticle/Graphene Oxide Hybrid Sheets Attached on Mesenchymal Stem Cells for Effective Photothermal Cancer Therapy. Chem. Mater. 2017, 29 (8), 3461-3476.
    181. Klyachko, N. L.; Polak, R.; Haney, M. J.; Zhao, Y. L.; Neto, R. J. G.; Hill, M. C.; Kabanov, A. V.; Cohen, R. E.; Rubner, M. F.; Batrakova, E. V., Macrophages with cellular backpacks for targeted drug delivery to the brain. Biomaterials 2017, 140, 79-87.
    182. Kang, S.; Bhang, S. H.; Hwang, S.; Yoon, J. K.; Song, J.; Jang, H. K.; Kim, S.; Kim, B. S., Mesenchymal Stem Cells Aggregate and Deliver Gold Nanoparticles to Tumors for Photothermal Therapy. ACS Nano 2015, 9 (10), 9678-9690.
    183. Choi, M.-R.; Stanton-Maxey, K. J.; Stanley, J. K.; Levin, C. S.; Bardhan, R.; Akin, D.; Badve, S.; Sturgis, J.; Robinson, J. P.; Bashir, R.; Halas, N. J.; Clare, S. E., A Cellular Trojan Horse for Delivery of Therapeutic Nanoparticles into Tumors. Nano Lett. 2007, 7 (12), 3759-3765.
    184. Baek, S.-K.; Makkouk, A.; Krasieva, T.; Sun, C.-H.; Madsen, S.; Hirschberg, H., Photothermal treatment of glioma; an in vitro study of macrophage-mediated delivery of gold nanoshells. J. Neuro-Oncol. 2011, 104 (2), 439-448.
    185. Madsen, S.; Baek, S.-K.; Makkouk, A.; Krasieva, T.; Hirschberg, H., Macrophages as Cell-Based Delivery Systems for Nanoshells in Photothermal Therapy. Ann. Biomed. Eng. 2012, 40 (2), 507-515.
    186. Qin, J. B.; Peng, Z. Y.; Li, B.; Ye, K. C.; Zhang, Y. X.; Yuan, F. K.; Yang, X. R.; Huang, L. J.; Hu, J. Q.; Lu, X. W., Gold nanorods as a theranostic platform for in vitro and in vivo imaging and photothermal therapy of inflammatory macrophages. Nanoscale 2015, 7 (33), 13991-14001.
    187. Ratto, F.; Centi, S.; Avigo, C.; Borri, C.; Tatini, F.; Cavigli, L.; Kusmic, C.; Lelli, B.; Lai, S.; Colagrande, S.; Faita, F.; Menichetti, L.; Pini, R., A Robust Design for Cellular Vehicles of Gold Nanorods for Multimodal Imaging. Adv. Func. Mater. 2016, 26 (39), 7178-7185.
    188. Tan, S.; Wu, T.; Zhang, D.; Zhang, Z., Cell or cell membrane-based drug delivery systems. Theranostics 2015, 5 (8), 863-881.
    189. Hu, C. M.; Fang, R. H.; Wang, K. C.; Luk, B. T.; Thamphiwatana, S.; Dehaini, D.; Nguyen, P.; Angsantikul, P.; Wen, C. H.; Kroll, A. V.; Carpenter, C.; Ramesh, M.; Qu, V.; Patel, S. H.; Zhu, J.; Shi, W.; Hofman, F. M.; Chen, T. C.; Gao, W.; Zhang, K.; Chien, S.; Zhang, L., Nanoparticle biointerfacing by platelet membrane cloaking. Nature 2015, 526 (7571), 118-121.
    190. Hu, C. M. J.; Fang, R. H.; Copp, J.; Luk, B. T.; Zhang, L. F., A biomimetic nanosponge that absorbs pore-forming toxins. Nat. Nanotechnol. 2013, 8 (5), 336-340.
    191. Parodi, A.; Quattrocchi, N.; van de Ven, A. L.; Chiappini, C.; Evangelopoulos, M.; Martinez, J. O.; Brown, B. S.; Khaled, S. Z.; Yazdi, I. K.; Enzo, M. V.; Isenhart, L.; Ferrari, M.; Tasciotti, E., Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat. Nanotechnol. 2013, 8 (1), 61-68.
    192. Hu, Q.; Sun, W.; Qian, C.; Wang, C.; Bomba, H. N.; Gu, Z., Anticancer Platelet-Mimicking Nanovehicles. Adv. Mater. 2015, 27 (44), 7043-7050.
    193. Cao, H. Q.; Dan, Z. L.; He, X. Y.; Zhang, Z. W.; Yu, H. J.; Yin, Q.; Li, Y. P., Liposomes Coated with Isolated Macrophage Membrane Can Target Lung Metastasis of Breast Cancer. ACS Nano 2016, 10 (8), 7738-7748.
    194. Wilhelm, S.; Tavares, A. J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H. F.; Chan, W. C. W., Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016, 1 (5), 16014.
    195. Bae, Y. H.; Park, K., Targeted drug delivery to tumors: Myths, reality and possibility. J.Controlled Release 2011, 153 (3), 198-205.
    196. Gengenbacher, N.; Singhal, M.; Augustin, H. G., Preclinical mouse solid tumour models: status quo, challenges and perspectives. Nat. Rev. Cancer 2017, 17 (12), 751-765.
    197. Goldberg, E. P.; Hadba, A. R.; Almond, B. A.; Marotta, J. S., Intratumoral cancer chemotherapy and immunotherapy: opportunities for nonsystemic preoperative drug delivery. J. Pharm. Pharmacol. 2002, 54 (2), 159-180.
    198. Wolinsky, J. B.; Colson, Y. L.; Grinstaff, M. W., Local drug delivery strategies for cancer treatment: gels, nanoparticles, polymeric films, rods, and wafers. J. Controlled Release 2012, 159 (1), 14-26.
    199. Idee, J. M.; Guiu, B., Use of Lipiodol as a drug-delivery system for transcatheter arterial chemoembolization of hepatocellular carcinoma: A review. Crit. Rev. Oncol. Hematol. 2013, 88 (3), 530-549.
    200. Tumturk, A.; Kucuk, A.; Canoz, O.; Tucer, B.; Kurtsoy, A., Intratumoral Ethyl Alcohol Injection for Devascularization of Hypervascular Intracranial Tumors. Turk. Neurosurg. 2016, 26 (5), 684-689.
    201. Anselmo, A. C.; Mitragotri, S., A Review of Clinical Translation of Inorganic Nanoparticles. AAPS J. 2015, 17 (5), 1041-1054.
    202. Phillips, W. T.; Bao, A.; Brenner, A. J.; Goins, B. A., Image-guided interventional therapy for cancer with radiotherapeutic nanoparticles. Adv. Drug Delivery Rev. 2014, 76, 39-59.
    203. Bonvalot, S.; Le Pechoux, C.; De Baere, T.; Kantor, G.; Buy, X.; Stoeckle, E.; Terrier, P.; Sargos, P.; Coindre, J. M.; Lassau, N.; Sarkouh, R. A.; Dimitriu, M.; Borghi, E.; Levy, L.; Deutsch, E.; Soria, J. C., First-in-Human Study Testing a New Radioenhancer Using Nanoparticles (NBTXR3) Activated by Radiation Therapy in Patients with Locally Advanced Soft Tissue Sarcomas. Clin. Cancer Res. 2017, 23 (4), 908-917.
    204. Dewhirst, M. W.; Secomb, T. W., Transport of drugs from blood vessels to tumour tissue. Nat. Rev. Cancer 2017, 17 (12), 738-750.
    205. Weber, C.; Coester, C.; Kreuter, J.; Langer, K., Desolvation process and surface characterisation of protein nanoparticles. Int. J. Pharm. 2000, 194 (1), 91-102.
    206. Langer, K.; Balthasar, S.; Vogel, V.; Dinauer, N.; von Briesen, H.; Schubert, D., Optimization of the preparation process for human serum albumin (HSA) nanoparticles. Int. J. Pharm. 2003, 257 (1–2), 169-180.
    207. Schottler, S.; Landfester, K.; Mailander, V., Controlling the Stealth Effect of Nanocarriers through Understanding the Protein Corona. Angew. Chem., Int. Ed. 2016, 55 (31), 8806-8815.
    208. Vuarchey, C.; Kumar, S.; Schwendener, R., Albumin coated liposomes: a novel platform for macrophage specific drug delivery. Nanotechnol. Dev. 2011, 1 (e2), 4-10.
    209. Yasun, E.; Li, C. M.; Barut, I.; Janvier, D.; Qiu, L. P.; Cui, C.; Tan, W. H., BSA modification to reduce CTAB induced nonspecificity and cytotoxicity of aptamer-conjugated gold nanorods. Nanoscale 2015, 7 (22), 10240-10248.
    210. Si, J.; Shao, S.; Shen, Y.; Wang, K., Macrophages as Active Nanocarriers for Targeted Early and Adjuvant Cancer Chemotherapy. Small 2016, 12 (37), 5108-5119.
    211. Chithrani, B. D.; Ghazani, A. A.; Chan, W. C. W., Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006, 6 (4), 662-668.
    212. Desai, M. P.; Labhasetwar, V.; Walter, E.; Levy, R. J.; Amidon, G. L., The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm. Res. 1997, 14 (11), 1568-1573.
    213. Roper, D. K.; Ahn, W.; Hoepfner, M., Microscale Heat Transfer Transduced by Surface Plasmon Resonant Gold Nanoparticles. J. Phys. Chem. C 2007, 111 (9), 3636-3641.
    214. Abadeer, N. S.; Murphy, C. J., Recent Progress in Cancer Thermal Therapy Using Gold Nanoparticles. J. Phys. Chem. C 2016, 120 (9), 4691-4716.
    215. Dominguez-Medina, S.; Kisley, L.; Tauzin, L. J.; Hoggard, A.; Shuang, B.; Indrasekara, A. S.; Chen, S.; Wang, L. Y.; Derry, P. J.; Liopo, A.; Zubarev, E. R.; Landes, C. F.; Link, S., Adsorption and Unfolding of a Single Protein Triggers Nanoparticle Aggregation. ACS Nano 2016, 10 (2), 2103-2112.
    216. Bisker, G.; Dong, J.; Park, H. D.; Iverson, N. M.; Ahn, J.; Nelson, J. T.; Landry, M. P.; Kruss, S.; Strano, M. S., Protein-targeted corona phase molecular recognition. Nat. Commun. 2016, 7, 10241.
    217. Lin, C. C.; Melo, F. A.; Ghosh, R.; Suen, K. M.; Stagg, L. J.; Kirkpatrick, J.; Arold, S. T.; Ahmed, Z.; Ladbury, J. E., Inhibition of Basal FGF Receptor Signaling by Dimeric Grb2. Cell 2012, 149 (7), 1514-1524.
    218. Foty, R., A simple hanging drop cell culture protocol for generation of 3D spheroids. J. Visualized Exp. 2011, (51), e2720.
    219. Fischer, A. H.; Jacobson, K. A.; Rose, J.; Zeller, R., Hematoxylin and eosin staining of tissue and cell sections. Cold Spring Harb. Protoc. 2008, 2008, pdb prot4986.
    220. Li, M. L.; Wang, J. C.; Schwartz, J. A.; Gill-Sharp, K. L.; Stoica, G.; Wang, L. H. V., In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature. J. Biomed. Opt. 2009, 14 (1), 010507.
    221. Jayakrishnan, A.; Jameela, S. R., Glutaraldehyde as a fixative in bioprostheses and drug delivery matrices. Biomaterials 1996, 17 (5), 471-484.
    222. Migneault, I.; Dartiguenave, C.; Bertrand, M. J.; Waldron, K. C., Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques 2004, 37 (5), 790-802.
    223. Li, F. Q.; Su, H.; Wang, J.; Liu, J. Y.; Zhu, Q. G.; Fei, Y. B.; Pan, Y. H.; Hu, J. H., Preparation and characterization of sodium ferulate entrapped bovine serum albumin nanoparticles for liver targeting. Int. J. Pharm. 2008, 349 (1-2), 274-282.
    224. von Storp, B.; Engel, A.; Boeker, A.; Ploeger, M.; Langer, K., Albumin nanoparticles with predictable size by desolvation procedure. J. Microencapsulation 2012, 29 (2), 138-146.
    225. Kim, C.; Cho, E. C.; Chen, J.; Song, K. H.; Au, L.; Favazza, C.; Zhang, Q.; Cobley, C. M.; Gao, F.; Xia, Y.; Wang, L. V., In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages. ACS Nano 2010, 4 (8), 4559-4564.
    226. Tebbe, M.; Kuttner, C.; Mannel, M.; Fery, A.; Chanana, M., Colloidally Stable and Surfactant-Free Protein-Coated Gold Nanorods in Biological Media. ACS Appl. Mater. Interfaces 2015, 7 (10), 5984-5991.
    227. Wang, J.; Bai, R.; Yang, R.; Liu, J.; Tang, J. L.; Liu, Y.; Li, J. Y.; Chai, Z. F.; Chen, C. Y., Size- and surface chemistry-dependent pharmacokinetics and tumor accumulation of engineered gold nanoparticles after intravenous administration. Metallomics 2015, 7 (3), 516-524.
    228. Dominguez-Medina, S.; Kisley, L.; Tauzin, L. J.; Hoggard, A.; Shuang, B.; AS, D. S. I.; Chen, S.; Wang, L. Y.; Derry, P. J.; Liopo, A.; Zubarev, E. R.; Landes, C. F.; Link, S., Adsorption and Unfolding of a Single Protein Triggers Nanoparticle Aggregation. ACS Nano 2016, 10 (2), 2103-2112.
    229. Larson, T. A.; Joshi, P. P.; Sokolov, K., Preventing protein adsorption and macrophage uptake of gold nanoparticles via a hydrophobic shield. ACS Nano 2012, 6 (10), 9182-9190.
    230. Said, N.; Frierson, H. F.; Chernauskas, D.; Conaway, M.; Motamed, K.; Theodorescu, D., The role of SPARC in the TRAMP model of prostate carcinogenesis and progression. Oncogene 2009, 28 (39), 3487-3498.
    231. Merlot, A. M.; Kalinowski, D. S.; Richardson, D. R., Unraveling the mysteries of serum albumin-more than just a serum protein. Front. Physiol. 2014, 5, 299.
    232. Fleischer, C. C.; Payne, C. K., Nanoparticle-Cell Interactions: Molecular Structure of the Protein Corona and Cellular Outcomes. Acc. Chem. Res. 2014, 47 (8), 2651-2659.
    233. Chen, M. C.; Lord, R. C., Laser-Excited Raman-Spectroscopy of Biomolecules .8. Conformational Study of Bovine Serum-Albumin. J. Am. Chem. Soc. 1976, 98 (4), 990-992.
    234. Ota, C.; Takano, K., Behavior of Bovine Serum Albumin Molecules in Molecular Crowding Environments Investigated by Raman Spectroscopy. Langmuir 2016, 32 (29), 7372-7382.
    235. Fazio, B.; D'Andrea, C.; Foti, A.; Messina, E.; Irrera, A.; Donato, M. G.; Villari, V.; Micali, N.; Marago, O. M.; Gucciardi, P. G., SERS detection of Biomolecules at Physiological pH via aggregation of Gold Nanorods mediated by Optical Forces and Plasmonic Heating. Sci. Rep. 2016, 6, 26952.
    236. Hedoux, A.; Willart, J. F.; Paccou, L.; Guinet, Y.; Affouard, F.; Lerbret, A.; Descamps, M., Thermostabilization mechanism of bovine serum albumin by trehalose. J. Phys. Chem. B 2009, 113 (17), 6119-6126.
    237. Ge, C. C.; Du, J. F.; Zhao, L. N.; Wang, L. M.; Liu, Y.; Li, D. H.; Yang, Y. L.; Zhou, R. H.; Zhao, Y. L.; Chai, Z. F.; Chen, C. Y., Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc. Natl. Acad. Sci. U. S. A. 2011, 108 (41), 16968-16973.
    238. Vilanova, O.; Mittag, J. J.; Kelly, P. M.; Milani, S.; Dawson, K. A.; Radler, J. O.; Franzese, G., Understanding the Kinetics of Protein-Nanoparticle Corona Formation. ACS Nano 2016, 10 (12), 10842-10850.
    239. Jerabek-Willemsen, M.; Andre, T.; Wanner, R.; Roth, H. M.; Duhr, S.; Baaske, P.; Breitsprecher, D., MicroScale Thermophoresis: Interaction analysis and beyond. J. Mol. Struct. 2014, 1077, 101-113.
    240. Takacs, M.; Petoukhov, M. V.; Atkinson, R. A.; Roblin, P.; Ogi, F. X.; Demeler, B.; Potier, N.; Chebaro, Y.; Dejaegere, A.; Svergun, D. I.; Moras, D.; Billas, I. M., The asymmetric binding of PGC-1alpha to the ERRalpha and ERRgamma nuclear receptor homodimers involves a similar recognition mechanism. PLoS One 2013, 8 (7), e67810.
    241. Chamani, J.; Vahedian-Movahed, H.; Saberi, M. R., Lomefloxacin promotes the interaction between human serum albumin and transferrin: A mechanistic insight into the emergence of antibiotic's side effects. J. Pharm. Biomed. Anal. 2011, 55 (1), 114-124.
    242. Pitek, A. S.; O'Connell, D.; Mahon, E.; Monopoli, M. P.; Bombelli, F. B.; Dawson, K. A., Transferrin Coated Nanoparticles: Study of the Bionano Interface in Human Plasma. PLoS One 2012, 7 (7), e40685.
    243. Aggarwal, P.; Hall, J. B.; McLeland, C. B.; Dobrovolskaia, M. A.; McNeil, S. E., Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv. Drug Delivery Rev. 2009, 61 (6), 428-437.
    244. Saptarshi, S. R.; Duschl, A.; Lopata, A. L., Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J. Nanobiotechnol. 2013, 11, 26.
    245. Thevenot, P.; Hu, W.; Tang, L., Surface chemistry influences implant biocompatibility. Curr. Top. Med. Chem. 2008, 8 (4), 270-280.
    246. Treuel, L.; Docter, D.; Maskos, M.; Stauber, R. H., Protein corona - from molecular adsorption to physiological complexity. Beilstein J. Nanotechnol. 2015, 6, 857-873.
    247. Deng, W.; Li, J.; Yao, P.; He, F.; Huang, C., Green preparation process, characterization and antitumor effects of doxorubicin-BSA-dextran nanoparticles. Macromol. Biosci. 2010, 10 (10), 1224-1234.
    248. Wu, Y.; Ihme, S.; Feuring-Buske, M.; Kuan, S. L.; Eisele, K.; Lamla, M.; Wang, Y.; Buske, C.; Weil, T., A core-shell albumin copolymer nanotransporter for high capacity loading and two-step release of doxorubicin with enhanced anti-leukemia activity. Adv. Healthcare Mater. 2013, 2 (6), 884-894.
    249. Agudelo, D.; Bourassa, P.; Bruneau, J.; Berube, G.; Asselin, E.; Tajmir-Riahi, H. A., Probing the binding sites of antibiotic drugs doxorubicin and N-(trifluoroacetyl) doxorubicin with human and bovine serum albumins. PLoS One 2012, 7 (8), e43814.
    250. Shen, S. H.; Wu, Y. S.; Liu, Y. C.; Wu, D. C., High drug-loading nanomedicines: progress, current status, and prospects. Int. J. Nanomed. 2017, 12, 4085-4109.
    251. Wang, H.; Agarwal, P.; Zhao, S. T.; Yu, J. H.; Lu, X. B.; He, X. M., A biomimetic hybrid nanoplatform for encapsulation and precisely controlled delivery of theranostic agents (vol 6, 10081, 2015). Nat. Commun. 2016, 7, 10350.
    252. Dreis, S.; Rothweller, F.; Michaelis, A.; Cinatl, J.; Kreuter, J.; Langer, K., Preparation, characterisation and maintenance of drug efficacy of doxorubicin-loaded human serum albumin (HSA) nanoparticles. Int. J. Pharm. 2007, 341 (1-2), 207-214.
    253. Leo, E.; Vandelli, M. A.; Cameroni, R.; Forni, F., Doxorubicin-loaded gelatin nanoparticles stabilized by glutaraldehyde: Involvement of the drug in the cross-linking process. Int. J.Pharm. 1997, 155 (1), 75-82.
    254. Chaudhary, A.; Dwivedi, C.; Gupta, A.; Nandi, C. K., One pot synthesis of doxorubicin loaded gold nanoparticles for sustained drug release. RSC Adv. 2015, 5 (118), 97330-97334.
    255. Aryal, S.; Grailer, J. J.; Pilla, S.; Steeber, D. A.; Gong, S. Q., Doxorubicin conjugated gold nanoparticles as water-soluble and pH-responsive anticancer drug nanocarriers. J. Mater. Chem. 2009, 19 (42), 7879-7884.
    256. Anand, R.; Malanga, M.; Manet, I.; Manoli, F.; Tuza, K.; Aykac, A.; Ladaviere, C.; Fenyvesi, E.; Vargas-Berenguel, A.; Gref, R.; Monti, S., Citric acid-gamma-cyclodextrin crosslinked oligomers as carriers for doxorubicin delivery. Photochem. Photobiol. Sci. 2013, 12 (10), 1841-1854.
    257. Hu, Q. D.; Fan, H.; Ping, Y.; Liang, W. Q.; Tang, G. P.; Li, J., Cationic supramolecular nanoparticles for co-delivery of gene and anticancer drug. Chem. Commun. 2011, 47 (19), 5572-5574.
    258. Ma, X. Y.; Sun, X. C.; Hargrove, D.; Chen, J.; Song, D. H.; Dong, Q. C.; Lu, X. L.; Fan, T. H.; Fu, Y. J.; Lei, Y., A Biocompatible and Biodegradable Protein Hydrogel with Green and Red Autofluorescence: Preparation, Characterization and In Vivo Biodegradation Tracking and Modeling. Sci. Rep. 2016, 6, 19370.
    259. Langer, K.; Anhorn, M. G.; Steinhauser, I.; Dreis, S.; Celebi, D.; Schrickel, N.; Faust, S.; Vogel, V., Human serum albumin (HSA) nanoparticles: reproducibility of preparation process and kinetics of enzymatic degradation. Int. J. Pharm. 2008, 347 (1-2), 109-117.
    260. Jokerst, J. V.; Cole, A. J.; Van de Sompel, D.; Gambhir, S. S., Gold Nanorods for Ovarian Cancer Detection with Photoacoustic Imaging and Resection Guidance via Raman Imaging in Living Mice. ACS Nano 2012, 6 (11), 10366-10377.
    261. Ratto, F.; Centi, S.; Avigo, C.; Borri, C.; Tatini, F.; Cavigli, L.; Kusmic, C.; Lelli, B.; Lai, S.; Colagrande, S.; Faita, F.; Menichetti, L.; Pini, R., A Robust Design for Cellular Vehicles of Gold Nanorods for Multimodal Imaging. Adv. Funct. Mater. 2016, 26 (39), 7178-7185.
    262. Chen, Y. S.; Frey, W.; Kim, S.; Homan, K.; Kruizinga, P.; Sokolov, K.; Emelianov, S., Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy. Opt. Express 2010, 18 (9), 8867-8877.
    263. Huang, J. Y.; Park, J.; Wang, W.; Murphy, C. J.; Cahill, D. G., Ultrafast Thermal Analysis of Surface Functionalized Gold Nanorods in Aqueous Solution. ACS Nano 2013, 7 (1), 589-597.
    264. Wu, X. W.; Ni, Y. X.; Zhu, J.; Burrows, N. D.; Murphy, C. J.; Dumitrica, T.; Wang, X. J., Thermal Transport across Surfactant Layers on Gold Nanorods in Aqueous Solution. ACS Appl. Mater. Interfaces 2016, 8 (16), 10581-10589.
    265. Wang, Z. H.; Carter, J. A.; Lagutchev, A.; Koh, Y. K.; Seong, N. H.; Cahill, D. G.; Dlott, D. D., Ultrafast flash thermal conductance of molecular chains. Science 2007, 317 (5839), 787-790.
    266. Losego, M. D.; Grady, M. E.; Sottos, N. R.; Cahill, D. G.; Braun, P. V., Effects of chemical bonding on heat transport across interfaces. Nat. Mater. 2012, 11 (6), 502-506.
    267. Coquil, T.; Richman, E. K.; Hutchinson, N. J.; Tolbert, S. H.; Pilon, L., Thermal conductivity of cubic and hexagonal mesoporous silica thin films. J. Appl. Phys. 2009, 106 (3), 034910.
    268. Lervik, A.; Bresme, F.; Kjelstrup, S.; Bedeaux, D.; Rubi, J. M., Heat transfer in protein-water interfaces. Phys. Chem. Chem. Phys. 2010, 12 (7), 1610-1617.
    269. Soussi, J.; Volz, S.; Palpant, B.; Chalopin, Y., A detailed microscopic study of the heat transfer at a water gold interface coated with a polymer. Appl. Phys. Lett. 2015, 106 (9), 093113.
    270. Schoen, P. A. E.; Michel, B.; Curioni, A.; Poulikakos, D., Hydrogen-bond enhanced thermal energy transport at functionalized, hydrophobic and hydrophilic silica-water interfaces. Chem. Phy.s Lett. 2009, 476 (4-6), 271-276.
    271. Hopkins, P. E., Thermal Transport across Solid Interfaces with Nanoscale Imperfections: Effects of Roughness, Disorder, Dislocations, and Bonding on Thermal Boundary Conductance. ISRN Mech. Eng. 2013, 2013, 682586.
    272. Choi, W. I.; Kim, J. Y.; Kang, C.; Byeon, C. C.; Kim, Y. H.; Tee, G., Tumor Regression In Vivo by Photothermal Therapy Based on Gold-Nanorod-Loaded, Functional Nanocarriers. ACS Nano 2011, 5 (3), 1995-2003.
    273. Kolosnjaj-Tabi, J.; Javed, Y.; Lartigue, L.; Volatron, J.; Elgrabli, D.; Marangon, I.; Pugliese, G.; Caron, B.; Figuerola, A.; Luciani, N.; Pellegrino, T.; Alloyeau, D.; Gazeau, F., The One Year Fate of Iron Oxide Coated Gold Nanoparticles in Mice. ACS Nano 2015, 9 (8), 7925-7939.
    274. Robinson, R.; Gerlach, W.; Ghandehari, H., Comparative effect of gold nanorods and nanocages for prostate tumor hyperthermia. J. Controlled Release 2015, 220, 245-252.
    275. Liu, J.; Detrembleur, C.; De Pauw-Gillet, M. C.; Mornet, S.; Jerome, C.; Duguet, E., Gold Nanorods Coated with Mesoporous Silica Shell as Drug Delivery System for Remote Near Infrared Light-Activated Release and Potential Phototherapy. Small 2015, 11 (19), 2323-2332.
    276. Zhang, X. F.; Yao, S.; Liu, C.; Jiang, Y. Y., Tumor tropic delivery of doxorubicin-polymer conjugates using mesenchymal stem cells for glioma therapy. Biomaterials 2015, 39, 269-281.
    277. Gao, Z.; Zhang, L.; Hu, J.; Sun, Y., Mesenchymal stem cells: a potential targeted-delivery vehicle for anti-cancer drug loaded nanoparticles. Nanomedicine 2013, 9 (2), 174-184.
    278. Dalmark, M.; Storm, H. H., A Fickian Diffusion Transport Process with Features of Transport Catalysis - Doxorubicin Transport in Human Red-Blood-Cells. J. Gen. Physiol. 1981, 78 (4), 349-364.
    279. Herman, T. S.; Henle, K. J.; Nagle, W. A.; Moss, A. J.; Monson, T. P., Effect of step-down heating on the cytotoxicity of adriamycin, bleomycin, and cis-diamminedichloroplatinum. Cancer Res. 1984, 44 (5), 1823-1826.
    280. Istomin, Y. P.; Zhavrid, E. A.; Alexandrova, E. N.; Sergeyeva, O. P.; Petrovich, S. V., Dose enhancement effect of anticaner drugs associated with increased temperature in vitro. Exp. Oncol. 2008, 30 (1), 56-59.
    281. Tang, Y.; McGoron, A. J., Combined effects of laser-ICG photothermotherapy and doxorubicin chemotherapy on ovarian cancer cells. J. Photochem. Photobiol., B 2009, 97 (3), 138-144.
    282. Lai, P.; Lechtman, E.; Mashouf, S.; Pignol, J. P.; Reilly, R. M., Depot system for controlled release of gold nanoparticles with precise intratumoral placement by permanent brachytherapy seed implantation (PSI) techniques. Int. J. Pharm. 2016, 515 (1-2), 729-739.
    283. Hohenforst-Schmidt, W.; Zarogoulidis, P.; Darwiche, K.; Vogl, T.; Goldberg, E. P.; Huang, H.; Simoff, M.; Li, Q.; Browning, R.; Turner, F. J.; Le Pivert, P.; Spyratos, D.; Zarogoulidis, K.; Celikoglu, S. I.; Celikoglu, F.; Brachmann, J., Intratumoral chemotherapy for lung cancer: re-challenge current targeted therapies. Drug Des., Dev. Ther. 2013, 7, 571-583.
    284. Rodenhuis, S., The status of high-dose chemotherapy in breast cancer. Oncologist 2000, 5 (5), 369-375.
    285. Brincker, H., Direct intratumoral chemotherapy. Crit. Rev. Oncol. Hematol. 1993, 15 (2), 91-98.
    286. Al-Abd, A. M.; Hong, K. Y.; Song, S. C.; Kuh, H. J., Pharmacokinetics of doxorubicin after intratumoral injection using a thermosensitive hydrogel in tumor-bearing mice. J. Controlled Release 2010, 142 (1), 101-107.
    287. Jeon, M. J.; Ahn, C. H.; Kim, H.; Chung, I. J.; Jung, S.; Kim, Y. H.; Youn, H.; Chung, J. W.; Kim, Y. I., The intratumoral administration of ferucarbotran conjugated with doxorubicin improved therapeutic effect by magnetic hyperthermia combined with pharmacotherapy in a hepatocellular carcinoma model. J. Exp. Clin. Cancer Res. 2014, 33, 57.
    288. Kossatz, S.; Ludwig, R.; Dähring, H.; Ettelt, V.; Rimkus, G.; Marciello, M.; Salas, G.; Patel, V.; Teran, F. J.; Hilger, I., High Therapeutic Efficiency of Magnetic Hyperthermia in Xenograft Models Achieved with Moderate Temperature Dosages in the Tumor Area. Pharm. Res. 2014, 31 (12), 3274-3288.
    289. Dewhirst, M. W.; Viglianti, B. L.; Lora-Michiels, M.; Hanson, M.; Hoopes, P. J., Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int. J. Hyperthermia 2003, 19 (3), 267-294.
    290. Yarmolenko, P. S.; Moon, E. J.; Landon, C.; Manzoor, A.; Hochman, D. W.; Viglianti, B. L.; Dewhirst, M. W., Thresholds for thermal damage to normal tissues: An update. Int. J. Hyperthermia 2011, 27 (4), 320-343.
    291. Melamed, J. R.; Edelstein, R. S.; Day, E. S., Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy. ACS Nano 2015, 9 (1), 6-11.
    292. Rhim, H.; Dodd, G. D., 3rd; Chintapalli, K. N.; Wood, B. J.; Dupuy, D. E.; Hvizda, J. L.; Sewell, P. E.; Goldberg, S. N., Radiofrequency thermal ablation of abdominal tumors: lessons learned from complications. Radiographics 2004, 24 (1), 41-52.
    293. Zagar, T. M.; Oleson, J. R.; Vujaskovic, Z.; Dewhirst, M. W.; Craciunescu, O. I.; Blackwell, K. L.; Prosnitz, L. R.; Jones, E. L., Hyperthermia combined with radiation therapy for superficial breast cancer and chest wall recurrence: a review of the randomised data. Int. J. Hyperthermia 2010, 26 (7), 612-617.
    294. Bobo, R. H.; Laske, D. W.; Akbasak, A.; Morrison, P. F.; Dedrick, R. L.; Oldfield, E. H., Convection-enhanced delivery of macromolecules in the brain. Proc. Natl. Acad. Sci. U. S. A. 1994, 91 (6), 2076-2080.
    295. Casanova, F.; Carney, P. R.; Sarntinoranont, M., Effect of needle insertion speed on tissue injury, stress, and backflow distribution for convection-enhanced delivery in the rat brain. PLoS One 2014, 9 (4), e94919.
    296. Vinogradov, S.; Warren, G.; Wei, X., Macrophages associated with tumors as potential targets and therapeutic intermediates. Nanomedicine 2014, 9 (5), 695-707.
    297. Murdoch, C.; Giannoudis, A.; Lewis, C. E., Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 2004, 104 (8), 2224-2234.
    298. Goldman, A.; Kulkarni, A.; Kohandel, M.; Pandey, P.; Rao, P.; Natarajan, S. K.; Sabbisetti, V.; Sengupta, S., Rationally Designed 2-in-1 Nanoparticles Can Overcome Adaptive Resistance in Cancer. ACS Nano 2016, 10 (6), 5823-5834.
    299. Zhao, Y.; Fay, F.; Hak, S.; Manuel Perez-Aguilar, J.; Sanchez-Gaytan, B. L.; Goode, B.; Duivenvoorden, R.; de Lange Davies, C.; Bjorkoy, A.; Weinstein, H.; Fayad, Z. A.; Perez-Medina, C.; Mulder, W. J., Augmenting drug-carrier compatibility improves tumour nanotherapy efficacy. Nat. Commun. 2016, 7, 11221.
    300. Lee, J. Y.; Carugo, D.; Crake, C.; Owen, J.; de Saint Victor, M.; Seth, A.; Coussios, C.; Stride, E., Nanoparticle-Loaded Protein-Polymer Nanodroplets for Improved Stability and Conversion Efficiency in Ultrasound Imaging and Drug Delivery. Adv. Mater. 2015, 27 (37), 5484-92.
    301. Pantusa, M.; Sportelli, L.; Bartucci, R., Transfer of stearic acids from albumin to polymer-grafted lipid containing membranes probed by spin-label electron spin resonance. Biophys. Chem. 2005, 114 (2-3), 121-127.
    302. Bartucci, R.; Pantusa, M.; Marsh, D.; Sportelli, L., Interaction of human serum albumin with membranes containing polymer-grafted lipids: spin-label ESR studies in the mushroom and brush regimes. BBA-Biomembranes 2002, 1564 (1), 237-242.
    303. Zhang, X.; Luckham, P. F.; Hughes, A. D.; Thom, S.; Xu, X. Y., Towards an understanding of the release behavior of temperature-sensitive liposomes: a possible explanation of the "pseudoequilibrium'' release behavior at the phase transition temperature. J. Liposome Res. 2013, 23 (3), 167-173.
    304. Song, J. B.; Cheng, L.; Liu, A. P.; Yin, J.; Kuang, M.; Duan, H. W., Plasmonic Vesicles of Amphiphilic Gold Nanocrystals: Self-Assembly and External-Stimuli-Triggered Destruction. J. Am. Chem. Soc. 2011, 133 (28), 10760-10763.
    305. Li, H. J.; Du, J. Z.; Du, X. J.; Xu, C. F.; Sun, C. Y.; Wang, H. X.; Cao, Z. T.; Yang, X. Z.; Zhu, Y. H.; Nie, S. M.; Wang, J., Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy. Proc. Natl. Acad. Sci. U. S. A. 2016, 113 (15), 4164-4169.
    306. Xu, R.; Zhang, G. D.; Mai, J. H.; Deng, X. Y.; Segura-Ibarra, V.; Wu, S. H.; Shen, J. L.; Liu, H. R.; Hu, Z. H.; Chen, L. X.; Huang, Y.; Koay, E.; Huang, Y.; Liu, J.; Ensor, J. E.; Blanco, E.; Liu, X. W.; Ferrari, M.; Shen, H. F., An injectable nanoparticle generator enhances delivery of cancer therapeutics. Nat. Biotechnol. 2016, 34 (4), 414-418.
    307. Lovstad, R. A., A Kinetic-Study of the Coupled Iron-Ceruloplasmin Catalyzed Oxidation of Ascorbate in the Presence of Albumin. Biometals 1995, 8 (4), 328-331.
    308. Jing, Z. H.; Wu, S. H., Synthesis and characterization of monodisperse hematite nanoparticles modified by surfactants via hydrothermal approach. Mater. Lett. 2004, 58 (27-28), 3637-3640.
    309. Dorazio, S. J.; Tsitovich, P. B.; Siters, K. E.; Spernyak, J. A.; Morrow, J. R., Iron(II) PARACEST MRI Contrast Agents. J. Am. Chem. Soc. 2011, 133 (36), 14154-14156.
    310. Liu, J. M.; Lin, L. P.; Wang, X. X.; Lin, S. Q.; Cai, W. L.; Zhang, L. H.; Zheng, Z. Y., Highly selective and sensitive detection of Cu2+ with lysine enhancing bovine serum albumin modified-carbon dots fluorescent probe. Analyst 2012, 137 (11), 2637-2642.
    311. Bai, L.; Wang, X. H.; Song, F.; Wang, X. L.; Wang, Y. Z., "AND" logic gate regulated pH and reduction dual-responsive prodrug nanoparticles for efficient intracellular anticancer drug delivery. Chem. Commun. 2015, 51 (1), 93-96.
    312. Zha, Z. B.; Wang, S. M.; Zhang, S. H.; Qu, E. Z.; Ke, H. T.; Wang, J. R.; Dai, Z. F., Targeted delivery of CuS nanoparticles through ultrasound image-guided microbubble destruction for efficient photothermal therapy. Nanoscale 2013, 5 (8), 3216-3219.
    313. Sheldon, R. A., Cross-Linked Enzyme Aggregates as Industrial Biocatalysts. Org. Process Res. Dev. 2011, 15 (1), 213-223.
    314. Bito, R.; Hino, S.; Baba, A.; Tanaka, M.; Watabe, H.; Kawabata, H., Degradation of oxidative stress-induced denatured albumin in rat liver endothelial cells. Am. J. Physiol., Cell Physiol. 2005, 289 (3), C531-C542.
    315. Jozefowski, S.; Marcinkiewicz, J., Aggregates of denatured proteins stimulate nitric oxide and superoxide production in macrophages. Inflammation Res. 2010, 59 (4), 277-289.

    QR CODE