簡易檢索 / 詳目顯示

研究生: 傅華政
Fu, Hua Cheng
論文名稱: 可補償溫度效應之三維晶片中電源電壓用穿矽連接孔的線上測試方法
Temperature-Aware Online Testing of Power-Delivery TSVs in 3D-ICs
指導教授: 黃錫瑜
Huang, Shi Yu
口試委員: 蒯定明
周永發
黃俊郎
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 104
語文別: 英文
論文頁數: 42
中文關鍵詞: 環形振盪器電源電壓降溫度製程校準電源電壓用穿矽連接孔
外文關鍵詞: Ring Oscillator, Voltage Drop, Temperature, Process Calibration, Power-TSV
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在三維晶片裡傳輸電源電壓所用的『穿矽連接孔』(Through Silicon Via)當中,一旦有任何原因造成其損壞,則可能會使該條穿矽連接孔所對應到附近區域的電源電壓品質有所下降,特別在電路運作當中工作負載較大時,會產生無預警的電源電壓突波,造成電源電壓發生大幅下降,最後甚至影響到電路操作的主要功能。為了確保電路在運作時的可靠度,我們希望能提前檢測出這些受到損壞的電源電壓傳輸用之穿矽連接孔,也因為這個動機,先前已經提出了許多種利用『環形振盪器』(Ring-Oscillator)當作感測元件,並且以此為基礎進行晶片內部即時『電源電壓落差』(VDD-drop)的監測方法。然而,這些監測晶片內部電源電壓落差的方法並沒有特別考慮到晶片本身在工作時,內部的溫度會隨時間而有所改變,而這些溫度改變的效應則可能會影響到電壓預測的準確性。因此在本篇論文當中,我們提出了一種可以考慮晶片內部溫度效應的影響下,電源電壓傳輸用之穿矽連接孔的測試方法。這個創新的測試方法中包含了以下的特色,首先,我們提出了一個可以校準環形振盪器本身受到製程飄移影響的方法,減少因製程飄移因素所造成電源電壓預測的誤差;另外,我們提出了一個考慮晶片內部溫度效應並且可以針對某段監測期間內,最嚴重的電源電壓落差情況之電壓預測方法。藉由這些方法來提升我們在判斷電源電壓傳輸用之穿矽連接孔的品質是否及格的準確性。


    A latent defect in a power-delivery TSV in a 3D IC could cause power glitches under a heavy workload in the field and thereby leading to timing failure. In order to catch these defects before they actually strike, on-line ring-oscillator based VDD-drop monitoring schemes have been proposed previously. However, these methods have not taken into account the effect of the temperature, which could affect their accuracy in the final VDD prediction. In this thesis, we present a temperature-aware test method for power-delivery TSVs, with several features - including a process-calibration scheme and a temperature-aware worst-case VDD prediction scheme. Based on the these schemes, the pass-or-fail decision on the quality of a power-TSV can be made more accurately.

    Abstract i 摘要 ii 致謝 iii Content iv List of Figures vi List of Tables viii Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Brief Introduction of Propose Test Method 4 1.3 Thesis Organization 6 Chapter 2 Ring-Oscillator Based Monitor for VDD Drop 7 2.1 Ring-Oscillator Based Monitor 7 2.2 Worst-Case VDD-drop Recording Scheme 9 2.3 Derive Average and Worst-Case Clock Period 10 Chapter 3 Proposed Test Method 12 3.1 Design-for-Testability Insertion 12 3.2 ROCP modeling 13 3.3 Online Test Flow 15 3.4 Data analysis 17 3.4.1 Process Calibration 19 3.4.2 Temperature-Aware VDD Prediction 22 Chapter 4 Experimental Results 25 4.1 Evaluation of Process Calibration Scheme 25 4.2 Overall VDD Prediction Error for the Test Case 30 4.2.1 Test Case 30 4.2.2 Injected Faulty VDD Waveform 33 4.2.3 Overall Prediction Results 35 4.3 Penalty of Ignoring Temperature Effects 36 4.4 Accuracy of Temperature Prediction 37 4.5 Use Interface of Our Software 38 Chapter 5 Conclusion 39 References 40

    [1] S. L. Wright, et al, "Characterization of Micro-bump C4 Interconnects for Si-Carrier SOP Applications," Proc. of Electronic Components and Technology Conf., pp. 633-640, 2006.
    [2] B. Banijamali, S. Ramalingam, K Nagarajan, and R. Chaware, “Advanced Reliability Study of TSV Interposers and Interconnects for the 28nm Technology FPGA,” Proc. of IEEE Electronic Components and Technology Conf., pp. 285–290, 2011.
    [3] S. L. Wright, et al, "Micro-interconnection Reliability: Thermal, Electrical and Mechanical Stress", Proc. Electronic Components and Technology Conf., pp. 1278-1286, May 2012.
    [4] K. Chakrabarty, “TSV defects and TSV-induced circuit failures: The third dimension in test and design-for-test,” in Proc. Int. Reliability Physics Symp., pp. 5F1.1–5F.1.12, 2012.
    [5] A. Muhtaroglu, G. Taylor, and T. Rahal-Arabi, “On-Die Droop Detector for Analog Sensing of Power Supply Noise,” IEEE J. of Solid-State Circuits, vol. 39, no. 4, pp. 651-660, April. 2004.
    [6] A. Sehgal, P. Song, and K. A. Jenkins, “On-Chip Real-Time Power Supply Noise Detector,” Proc. of IEEE European Solid-State Circuits Conf., pp. 380-383, Sept. 2006.
    [7] R. Petersen, P. Pant, P. Lopez, A. Barton, J. Ignowski, and D. Josephson, “Voltage Transient Detection and Induction for Debug and Test,” Proc. of IEEE Int’l Test Conf., pp. 1-10, Nov. 2009.
    [8] S. Dietel, S. Hoppner, T. Brauninger, U. Fiedler, H. Eisenreich, G. Ellguth, S. Hanzsche, S. Henker, R. Schüffny, “A compact on-chip IR-drop measurement system in 28 nm CMOS technology,” Circuits and Systems (ISCAS), 2014 IEEE International Symposium, pp. 1219-1222, Jun. 2014.
    [9] T.-Y. Wu, S.-H. Hu, and A. Abraham, “Robust Power Gating Reactivation By Dynamic Wakeup Sequence Throttling,” in Proc. 16th Asia South Pac. Des. Autom. Conf., pp. 615–620, 2011.
    [10] Z. Abuhamdeh, P. Pears, J. Remmers, A. L. Crouch, and B. Hannagan, “Characterize Predicted vs. Actual IR Drop in a Chip Using Scan Clocks”, IEEE Proc. of Int’l Test Conference (ITC), PP. 1-8, Oct. 2006.
    [11] Z. Abuhamdeh, B. Hannagan, A.L. Crouch, and J. Remmers, “A Production IR-Drop Screen on a Chip”, IEEE Design and Test of Computers, vol. 24, no. 3, pp. 216-224, 2007.
    [12] Z. Abuhamdeh, V. D'Alassandro, R. Pico, D. Montrone, A. Crouch, and A. Tracy, “Separating Temperature Effects from Ring-Oscillator Readings to Measure True IR-Drop On a Chip”, IEEE Proc. of Int’l Test Conference (ITC), pp. 1-10, Oct. 2007.
    [13] Y. Miura, Y. Sato, Y. Miyake, and S. Kajihara, "On-chip Temperature and Voltage measurement for Field Testing", Proc. of European Test Symp., pp. 28-31, 2012.
    [14] Y. Miyake, Y. Sato, S. Kajihara, and Y. Miura, “Temperature and Voltage Estimation Using Ring-Oscillator-Based Monitor for Field Test,” Proc. of Asian Test Symp., pp. 156-161, Nov. 2014.
    [15] M.-H. Chang, S.-Y. Lin, P.-C. Wu, O. Zakoretska, C.-T. Chuang, K.-N. Chen, C.-C. Wang, K.-H. Chen, C.-T. Chiu, H.-M. Tong, and Wei Hwang “Near-/Sub-Vth Process, Voltage, and Temperature (PVT) Sensors with Dynamic Voltage Selection,” Proc. of IEEE Int’l Symp. on Circuits and Systems, pp. 133-136, Jun. 2013.
    [16] U. Kang, H. Chung, S. Heo, D. Park, H. Lee, J. Kim, S. Ahn, S. Cha, J. Ahn, D. Kwon, et al., “8 GB 3-D DDR3 DRAM using Through-Silicon-Via Technology,” IEEE Journal of Solid-State Circuits, Vol. 45, No. 1, pp. 111–119, 2010.
    [17] C.-H. Hsu, S.-Y. Huang, D.-M. Kwai, and Y.-F. Chou, "Worst-Case IR-Drop Monitoring with 1GHz Sampling Rate," Proc. of VLSI Design, Automation, and Test (VLSI-DAT), (April 2013).
    [18] H.-X. Li, H.-C. Fu, S.-Y. Huang, J.-C. Jiang, D.-M. Kwai, and Y.-F. Chou, "Testing Power-Delivery TSVs", Proc. of Asian Symp. on Quality Electronic Design, Aug. 2015.
    [19] C.-W. Tzeng, S.-Y. Huang, P.-Y. Chao, and R.-T. Ding, "Parameterized All-Digital PLL Architecture and Its Compiler to Support Easy Process Migration," IEEE Trans. on VLSI Systems (TVLSI), Vol. 22, No. 3, pp. 621-630, March 2014.
    [20] “CIC Reference Flow for Cell-based IC Design”, Chip Implementation Center, CIC, Taiwan, Document no. CIC-DSD-RD-08-01, 2008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE