研究生: |
石翔文 Shih, Hsiang Wen |
---|---|
論文名稱: |
果蠅腦中調控溫度喜好之神經網路於⽼化過程中的變化 Parallel circuits control temperature preference in Drosophila during aging |
指導教授: |
江安世
Chiang, Ann Shyn |
口試委員: |
孫以瀚
Sun, Y. Henry 簡正鼎 Chien, Cheng Ting 桑自剛 Sang, Tzu Kang 陳令儀 Chen, Lin yi |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 51 |
中文關鍵詞: | 果蠅 、腦神經 、溫度 、行為 |
外文關鍵詞: | Drosophila, brain, temperature, behavior |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
感測環境溫度是人類與其他動物與生俱來的的能力。微觀生物體內各種生理反應所需的酵素,對環境溫度的變化相當敏感。因此,生物體必須尋找最有利的環境溫度,幫助體內各種維持新陳代謝的化學反應能順利進行。然而,溫度調控的能力隨著年齡增長而逐漸失去效率。在我們的研究當中,發現年老的果蠅對於低溫的躲避性降低,顯示個體對冷的敏感度隨著年齡而下降。除了觀察到這個現象外,我們更找到大腦中控制該行為變化的神經結構—蕈狀體(Mushroom Body)和分子作用機制。果蠅腦中兩個獨立的神經網絡MB β′ 和 MB β分別在個體老化的過程中,各自透過神經傳導物質-多巴胺分泌量的改變,共同調控果蠅對低溫的躲避性。MB β′ 在年輕果蠅的溫度偏好行為中扮演主要角色。然而,隨著果蠅老化過程中,MB β的重要性逐漸超越MB β′的角色,主導年老果蠅溫度喜好的行為表現。過去研究發現,許多生物在低溫環境下,代謝速率降低,導致身體產生的自由基減少,暗示著處於低溫環境對延緩老化可能是一個有利的抉擇。而我們的發現,正好提供一個方向,用以解釋老化過程中,生物體對溫度喜好改變的生理意義。
The detection of environmental temperature and regulation of body temperatures are integral determinants of behavior for all animals. These functions seemingly become less efficient in aged animals, especially during exposure to cold environments. We reasoned that a clearer understanding of the underlying molecular and cellular mechanisms that alter set point temperatures during aging could reveal insights into why such age-related changes occur. Here, we identified an age-related change in the temperature preference of adult fruit flies, which results from a shift in the relative contributions of two parallel mushroom body (MB) circuits—the β′ and β systems. The β′ circuit primarily controls cold avoidance through dopamine signaling in young flies, whereas the β circuit increasingly contributes to cold avoidance as adult flies age. The restoration of cold sensitivity in aged flies by elevating dopamine levels in β′ afferent neurons suggests that the alteration of cold avoidance behavior with aging is functionally reversible. These findings add to the diverse functions of the MB subregions and provide a framework to investigate how molecules and neural circuits modulate homeostatic alterations during the course of senescence.
1.Dillon, M. E., Wang, G., Garrity, P. A. & Huey, R. B. Review: Thermal preference in Drosophila. J. Therm. Biol. 34, 109–119 (2009).
2.Collins, K. J., Exton-Smith, A. N. & Dore, C. Urban hypothermia: preferred temperature and thermal perception in old age. Br. Med. J. (Clin. Res. Ed.) 282, 175–177 (1981).
3.Talan, M. Age-related changes in thermoregulation of mice. Ann. N. Y. Acad. Sci. 813, 95–100 (1997).
4.Sebastiao, A. M., Colino-Oliveira, M., Assaife-Lopes, N., Dias, R. B. & Ribeiro, J. A. Lipid rafts, synaptic transmission and plasticity: impact in age-related neurodegenerative diseases. Neuropharmacology 64, 97–107 (2013).
5.Blatteis, C. M. Age-dependent changes in temperature regulation - a mini review. Gerontology 58, 289–295 (2012).
6.Guergova, S. & Dufour, A. Thermal sensitivity in the elderly: a review. Ageing Res. Rev. 10, 80–92 (2011).
7.Algeri, S. et al. Changes with age in rat central monoaminergic system responses to cold stress. Neurobiol. Aging 3, 237–242 (1982).
8.Tumer, N. & Larochelle, J. S. Tyrosine hydroxylase expression in rat adrenal medulla: influence of age and cold. Pharmacol. Biochem. Behav. 51, 775–780 (1995).
9.Conti, B. Considerations on temperature, longevity and aging. Cell. Mol. Life Sci. 65, 1626–1630 (2008).
10.Salerian, A. J. & Saleri, N. G. Cooler biologically compatible core body temperatures may prolong longevity and combat neurodegenerative disorders. Med. Hypotheses 66, 636–642 (2006).
11.Hamada, F. N. et al. An internal thermal sensor controlling temperature preference in Drosophila. Nature 454, 217–220 (2008).
12.Tracey, W. D., Jr., Wilson, R. I., Laurent, G. & Benzer, S. painless, a Drosophila gene essential for nociception. Cell 113, 261-273 (2003).
13.Lee, Y. et al. Pyrexia is a new thermal transient receptor potential channel endowing tolerance to high temperatures in Drosophila melanogaster. Nat Genet 37, 305-310 (2005).
14.Gallio, M., Ofstad, T. A., Macpherson, L. J., Wang, J. W. & Zuker, C. S. The coding of temperature in the Drosophila brain. Cell 144, 614–624 (2011).
15.Hong, S. T. et al. cAMP signaling in mushroom bodies modulates temperature preference behavior in Drosophila. Nature 454, 771–775 (2008).
16.Jefferis, G. S., Marin, E. C., Watts, R. J. & Luo, L. Development of neuronal connectivity in Drosophila antennal lobes and mushroom bodies. Curr. Opin. Neurobiol. 12, 80-86 (2002).
17.Bang, S. et al. Dopamine signaling in mushroom bodies regulates temperature-preference behavior in Drosophila. PLoS Genet. 7, e1001346 (2011).
18.Yamamoto, A., Ohba, S. Temperature preferences of 11 Drosophila species from Japan–the relationship between preferred temperature and some ecological characteristics in their natural habitats. Zoological Sci. 4, 631–640 (1984).
19.Neckameyer, W. S., Woodrome, S., Holt, B. & Mayer, A. Dopamine and senescence in Drosophila melanogaster. Neurobiol. Aging 21, 145–152 (2000).
20.Sayeed, O. & Benzer, S. Behavioral genetics of thermosensation and hygrosensation in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 93, 6079–6084 (1996).
21.White, K. E., Humphrey, D. M. & Hirth, F. The dopaminergic system in the aging brain of Drosophila. Front. Neurosci. 4, 205 (2010).
22.Nakai, J., Ohkura, M. & Imoto, K. A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein. Nat. Biotechnol. 19, 137–141 (2001).
23.Yu, D., Akalal, D. G. & Davis, R. L. Drosophila α/β mushroom body neurons form a branch-specific, long-term cellular memory trace after spaced olfactory conditioning. Neuron 52, 845–855 (2006).
24.Zaritsky, J. J., Eckman, D. M., Wellman, G. C., Nelson, M. T. & Schwarz, T. L. Targeted disruption of Kir2.1 and Kir2.2 genes reveals the essential role of the inwardly rectifying K(+) current in K(+)-mediated vasodilation. Circ. Res. 87, 160–166 (2000).
25.Sweeney, S. T., Broadie, K., Keane, J., Niemann, H. & O'Kane, C. J. Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron 14, 341–351 (1995).
26.Tanaka, N. K., Tanimoto, H. & Ito, K. Neuronal assemblies of the Drosophila mushroom body. J. Comp. Neurol. 508, 711–755 (2008).
27.Perisse, E., Burke, C., Huetteroth, W. & Waddell, S. Shocking revelations and saccharin sweetness in the study of Drosophila olfactory memory. Curr. Biol. 23, 752–763 (2013).
28.Perisse, E. et al. Different Kenyon cell populations drive learned approach and avoidance in Drosophila. Neuron 79, 945-956 (2013).
29.Liu, C. et al. A subset of dopamine neurons signals reward for odour memory in Drosophila. Nature 488, 512–516 (2012).
30.Burke, C. J. et al. Layered reward signalling through octopamine and dopamine in Drosophila. Nature 492, 433–437 (2012).
31.Zhong, H., Yokoyama, C. T., Scheuer, T. & Catterall, W. A. Reciprocal regulation of P/Q-type Ca2+ channels by SNAP-25, syntaxin and synaptotagmin. Nat. Neurosci. 2, 939–941 (1999).
32.Schmucker, D. et al. Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101, 671–684 (2000).
33.Feinberg, E. H. et al. GFP Reconstitution Across Synaptic Partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron 57, 353–363 (2008).
34.Wong, A. M., Wang, J. W. & Axel, R. Spatial representation of the glomerular map in the Drosophila protocerebrum. Cell 109, 229–241 (2002).
35.McGuire, S. E., Le, P. T., Osborn, A. J., Matsumoto, K. & Davis, R. L. Spatiotemporal rescue of memory dysfunction in Drosophila. Science 302, 1765-1768 (2003).
36.Inagaki, H. K. et al. Optogenetic control of Drosophila using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship. Nature methods 11, 325-332 (2014).
37.Backman, L., Nyberg, L., Lindenberger, U., Li, S. C. & Farde, L. The correlative triad among aging, dopamine, and cognition: current status and future prospects. Neurosci. Biobehav. Rev. 30, 791–807 (2006).
38.Cline, T. W. Two closely linked mutations in Drosophila melanogaster that are lethal to opposite sexes and interact with daughterless. Genetics 90, 683–698 (1978).
39.Thibault, S. T. et al. A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nat. Genet. 36, 283–287 (2004).
40.Pfeiffer, B. D., Truman, J. W. & Rubin, G. M. Using translational enhancers to increase transgene expression in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 109, 6626–6631 (2012).
41.Kuo, S. Y. et al. A hormone receptor-based transactivator bridges different binary systems to precisely control spatial-temporal gene expression in Drosophila. PLoS One 7, e50855 (2012).
42.Shih, H. W. & Chiang, A. S. Anatomical characterization of thermosensory AC neurons in the adult Drosophila brain. J. Neurogenet. 25, 1–6 (2011).
43.Kong, E. C. et al. A pair of dopamine neurons target the D1-like dopamine receptor DopR in the central complex to promote ethanol-stimulated locomotion in Drosophila. PLoS One 5, e9954 (2010).
44.Chiang, A. S. et al. Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr. Biol. 21, 1–11 (2011).
45.Wang, J. W., Wong, A. M., Flores, J., Vosshall, L. B. & Axel, R. Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112, 271–282 (2003).