研究生: |
蔡明訓 Tsai, Ming-Hsun |
---|---|
論文名稱: |
奈米壓印微影技術應用於先進製程:技術藍圖視角 Nanoimprint Lithography Technology applied to Advance Processes: The Perspective of Technology Roadmap |
指導教授: |
李傳楷
Lee, Chuan-Kai |
口試委員: |
胡美智
Hu, Mei-Chih 吳清炎 Wu, Ching-Yan 陳良治 Chen, Liang-Chih |
學位類別: |
碩士 Master |
系所名稱: |
科技管理學院 - 經營管理碩士在職專班 Business Administration |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 43 |
中文關鍵詞: | 技術藍圖 、奈米壓印微影技術 、極紫外光微影技術 、先進微影製程 、競爭優勢 |
外文關鍵詞: | Technology roadmap, EUV Lithography, Advance Lithography Process |
相關次數: | 點閱:72 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
半導體產業是全球規模最大的產業之一,近年來,隨著智慧型手機、雲端運算、資料中心、高效能運算 (HPC) 與人工智慧 (AI) 等新興技術的發展,其中AI晶片需要大量的電晶體密度及市場端的需求快速倍增,因此對晶圓製造的製程能力提出了更高的要求。
本文主要是透過半導體微影製程技術藍圖發展,從目前市場獨佔的ASML EUV 極紫外光微影設備,進一步分析先進微影製程設備市場的成長及技術發展,以Canon公司為演技個案,分析其所開發的NIL奈米壓印微影設備的市場環境及競爭優勢。本研究發現: 此技術讓人期待的未來在 1. 滿足先進製程晶片製造的需求; 2. 拓展新興市場應用; 3. 避開EUV技術路徑且仍需要高解析度微影設備的需求,這些都是原來市場所空缺的,卻又對此技術有需求的市場拉力,若能持續朝這三個方向尋找機會,並且在2025與鎧俠Kioxia的合作能夠有具體的成績單,在先進微影設備的競賽中,必然能搶占一席之地。
本研究的貢獻是幫助不斷成長的電晶體密度及市場端整合產品技術發展策略,並幫助企業持續成長,找到可能的發展機會,尤其對於資源有限的晶圓代工公司,或產品數量級較少的利基型產品,或因產能排擠效應而無法快速搶佔市場的公司,提供了一個思維與制訂戰略方向。
The semiconductor industry is one of the largest industries in the world. In recent years, with the development of emerging technologies such as smartphones, cloud computing, data centers, high-performance computing (HPC), and artificial intelligence (AI), AI chips require a large number of transistors and the market demand has doubled rapidly, thus putting higher demands on the process capabilities of wafer manufacturing.
This thesis is mainly based on the development of the semiconductor lithography process technology roadmap, starting from the current market-exclusive ASML EUV lithography equipment, and further analyzing the growth and technology development of the advanced lithography process equipment market. Taking Canon Company as a acting case, the analysis The market environment and competitive advantages of the NIL (nanoimprint lithography) developed by it. This study found that: The promising future of this technology lies in 1. meeting the needs of advanced process wafer manufacturing; 2. expanding applications in emerging markets; 3. avoiding the EUV technology path and still requiring high-resolution lithography equipment. These are all There is a market vacancy in the original market, but there is a demand for this technology. If we can continue to look for opportunities in these three directions, and the cooperation with Kioxia in 2025 can have a specific report card, in advanced film equipment In the competition, you will definitely be able to seize a place.
The contribution of this thesis is to help the growing transistor density and market-end integration of product technology development strategies, and to help companies continue to grow and find possible development opportunities, especially for foundry companies with limited resources, or products with smaller orders of magnitude. Niche products, or companies that are unable to quickly seize the market due to capacity crowding out effects, provide a way to think and formulate strategic directions.
英文文獻
Albright, R. E., & Kappel, T. A. (2003). Roadmapping in the corporation. Research-Technology Management, 46(2), 31-40.
Ackoff, R. (1970). A concept of corporate planning. Long Range Planning, 3(1), 2-8.
Ackoff, R. L. (1999). Re-creating the Corporation: A Design of Organizations for the 21st Century. Oxford University Press.
Barker, D., & Smith, D. J. (1995). Technology foresight using roadmaps. Long Range Planning, 28(2), 21-28.
European Industrial Research Management Association. (1997). Technology roadmapping: Delivering business vision. EIRMA, Paris, 918.
Groenveld, P. (1997). Roadmapping integrates business and technology. Research-Technology Management, 40(5), 48-55.
Johanson, R. C. (1969). “A systematic approach to corporate planning,” Ph.D. thesis, North Texas State Univ., Denton, TX, USA.
Kerr, C., & Phaal, R. (2015, June). A scalable toolkit platform: Configurations for deployment in technology and innovation strategy workshops. In The R&D Management Conference (pp. 23-26).
Kerr, C., & Phaal, R. (2019, August). Defining the scope of a roadmapping initiative: A checklist-based template for organizational stakeholders. In 2019 Portland International Conference on Management of Engineering and Technology (PICMET) (pp. 1-10). IEEE.
Kerr, C., & Phaal, R. (2020). Technology roadmapping: Industrial roots, forgotten history and unknown origins. Technological Forecasting and Social Change, 155, 119967.
Kerr, C., & Phaal, R. (2021). Roadmapping and roadmaps: Definition and underpinning concepts. IEEE Transactions on Engineering Management, 69(1), 6-16.
Pfeifer, T., Kurokawa, S., & Meyer, S. (2001). Derivation of parameters of global form deviations for 3-dimensional surfaces in actual manufacturing processes. Measurement, 29(3), 179-200.
Phaal, R., & Yoshida, S. (2014, July). Architecting strategy: Visual form and function of roadmaps. In Proceedings of PICMET'14 Conference: Portland International Center for Management of Engineering and Technology; Infrastructure and Service Integration (pp. 2960-2971). IEEE.
Phaal, R., Farrukh, C. J., & Probert, D. (2010). Roadmapping for strategy and innovation: aligning technology and markets in a dynamic world. University of Cambridge, Institute for Manufacturing.
Phaal, R., Farrukh, C. J., & Probert, D. R. (2000, February). Fast-start technology roadmapping. In Proceedings of the 9th International Conference on Management of Technology (IAMOT 2000) (pp. 21-25).
Phaal, R., Farrukh, C. J., & Probert, D. R. (2005, July). Developing a technology roadmapping system. In A Unifying Discipline for Melting the Boundaries Technology Management: (pp. 99-111). IEEE.
Phaal, R., Laube, T., & Schwandner, O. (2007). T-Plan-Fast Start Technology Roadmapping.
Willyard, C. H., & McClees, C. W. (1987). Motorola's technology roadmap process. Research management, 30(5), 13-19.
網路資源
1. Yole, 2019, Nano-Imprint Technology Trends for Semiconductor Applications 2019, https://medias.yolegroup.com/uploads/2019/06/YD19029-NIL-Technology-Trends-for-Semiconductor-Applications-2019-Sam6ple-1.pdf, 存取日期: 2022年4月22日。
2. SPIE, 2023, Nanoimprint Performance Improvements for high volume semiconductor Device Manufacture, https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12915/1291505/Nanoimprint-performance-improvements-for-high-volume-semiconductor-device-manufacturing/10.1117/12.2684302.short, 存取日期: 2023 年 12 月 23 號。
3. SPIE, 2023, Advances and applications in nanoimprint lithography, https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12497/124970D/Advances-and-applications-in-nanoimprint-lithography/10.1117/12.2658127.short, 存取日期: 2023 年 12 月 23 號。
4. SPIE, 2022, Nanoimprint lithography: today and tomorrow, https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12054/1205403/Nanoimprint-lithography-today-and-tomorrow/10.1117/12.2615740.short, 存取日期: 2023 年 12 月 23 號。
5. SPIE, 2022, The Current Stages of Nano-Imprint Lithography and Its Future Outlook Toward Carbon Neutrality by 2050, https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12325/1232503/The-current-status-of-nano-imprint-lithography-and-its-future/10.1117/12.2640653.short, 存取日期: 2023 年 12 月 23 號。
6. IEEE, 2022, Roadmapping and Roadmaps: Definition and Underpinning Concept, https:// https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9508115, 存取日期: 2022年5月11日。