簡易檢索 / 詳目顯示

研究生: 陳彥宗
Chen, Yen-Tsung
論文名稱: 德林費爾模的算術與正特徵的多重zeta值
Arithmetic of Drinfeld modules and multiple zeta values in positive characteristic
指導教授: 張介玉
Chang, Chieh-Yu
口試委員: 夏良忠
Hsia, Liang-Chung
佐藤信夫
Sato, Nobuo
王姿月
Wang, Tzu-Yueh
魏福村
Wei, Fu-Tsun
于靖
Yu, Jing
學位類別: 博士
Doctor
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 118
中文關鍵詞: 德林費爾模t-動機多重zeta值
外文關鍵詞: Drinfeld modules, t-motives, multiple zeta values
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們關注兩類t模,包括德林費爾模和卡利茨模的張量冪。在第一部分,我們關注這些t模上代數點之間的線性關係。更準確地說,我們研究了在這些t模上有限多個代數點馬瑟定理[Mas88]的類比。我們估計出這些t模上代數點之間線性關係 生成元大小的上界。在第二部分,我們研究了正特徵中的多重zeta值。我們討論了一些線性獨立結果,並為某些多重zeta值所張出的向量空間建立了維度的下界。最後,我們研究了[CM21]中引入的v-進位多重zeta值。我們證明對於任何固定指標,v-進位多重zeta值對於除了有限多個素點v之外的所有素點都是v-進位整數。此外,我們證明了某些情況下古庄-山下猜想對於v-進位多重zeta值的類比。


    In this dissertation, we focus on two families of t-modules including Drinfeld modules and tensor powers of the Carlitz module. In the first part, we focus on the linear relations among algebraic points on these $t$-modules. More precisely, we study an analogue of Masser's theorem [Mas88] for finitely many algebraic points on these t-modules and consequently we derive an upper bound for the generators of F_q[t]-linear relations among them. In the second part, we study multiple zeta values in positive characteristic. We discuss some linear independence results and we established a lower bound of the dimension for certain vector spaces spanned by these values. Finally, we investigate v-adic multiple zeta values introduced in [CM21]. We prove that for any fixed index v-adic multiple zeta values are v-adic integers for all but finitely many places. Furthermore, we prove an analogue of a conjecture of Furusho and Yamashita for v-adic multiple zeta values for v a finite place of degree one.

    1 Introduction 1 1.1 An analogue of Masser’s theorem . . . . . . . . . . . . . . . 2 1.2 ∞-adic multiple zeta values . . . . . . . . . . . . . . . . . 5 1.3 v-adic multiple zeta values . . . . . . . . . . . . . . . . . 7 1.4 Outline of the dissertation . . . . . . . . . . . . . . . . . 9 2 Preliminaries 11 2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Anderson t-modules and dual t-motives . . . . . . . . . . . . 11 3 Linear equations on t-modules 20 3.1 Siegel’s lemma for function fields and lattices over Fq[t] . .20 3.2 Linear equations on Drinfeld modules . . . . . . . . . . . . .25 3.3 Tensor powers of the Carlitz module . . . . . . . . . . . . . 42 4 Multiple zeta values in positive characteristic 50 4.1 A linear independence criterion . . . . . . . . . . . . . . . 50 4.2 On a lower bound of the dimensions of MZVs . . . . . . . . . .62 5 Integrality of v-adic multiple zeta values 66 5.1 Background of Chang and Mishiba’s v-adic multiple zeta values 67 5.2 Integrality of v-adic multiple zeta values . . . . . . . . . .73 6 Transcendence of v-adic multiple zeta values 87 6.1 A refined version of the ABP linear independence criterion . .87 6.2 Linear independence of θ-adic multiple zeta values . . . . . 100 Bibliography 114

    [And86] G. W. Anderson, t-motives, Duke Math. J. 53 (1986), no. 2, 457–502.
    [ABP04] G. W. Anderson, W. D. Brownawell and M. A. Papanikolas, Deter-
    mination of the algebraic relations among special Γ-values in positive
    characteristic, Ann. of Math. (2) 160 (2004), no. 1, 237–313.
    [AHY] K. Akagi, M. Hirose and S. Yasuda Integrality of p-adic multiple zeta
    values and a bound for the space of finite multiple zeta values, In prepa-
    ration.
    [AT90] G. W. Anderson and D. S. Thakur, Tensor powers of the Carlitz module
    and zeta values, Ann. of Math. (2) 132 (1990), no. 1, 159–191.
    [AT09] G. W. Anderson and D. S. Thakur, Multizeta values for Fq[t], their period
    interpretation, and relations between them, Int. Math. Res. Not. (2009),
    no. 11, 2038–2055.
    [BP20] W. D. Brownawell and M. A. Papanikolas, A rapid introduction to Drin-
    feld modules, t-modules, and t-motives, t-Motives: Hodge Structures,
    Transcendence, and Other Motivic Aspects, European Mathematical So-
    ciety, Zürich, 2020, pp. 3-30.
    [BV83] E. Bombieri and J. Vaaler, On Siegel’s lemma, Invent. Math. 73 (1983),
    11-32.
    [Cas59] J. W. S. Cassels, An introduction to the geometry of numbers, Springer,
    Berlin Göttingen Heidelberg 1959.
    114
    [Cha09] C.-Y. Chang, A note on a refined version of Anderson-Brownawell-
    Papanikolas criterion, J.Number Theory. 129 (2009), 729-738.
    [Cha14] C.-Y. Chang, Linear independence of monomials of multizeta values in
    positive characteristic, Compos. Math. 150 (2014), 1789-1808.
    [Cha16] C.-Y. Chang, Linear relations among double zeta values in positive char-
    acteristic, Cambridge J. Math. 4 (2016), No. 3, 289-331.
    [Chat17] A. Chatzistamatiou, On integrality of p-adic iterated integrals, J. Alge-
    bra, 474 (2017), 240–270.
    [Che20] Y.-T. Chen, Linear equations on Drinfeld modules, arXiv:2011.00434.
    [Che21] Y.-T. Chen, Integrality of v-adic multiple zeta values, to appear in Publ.
    Res. Inst. Math. Sci.
    [Che22] Y.-T. Chen, On the linear independence of θ-adic Carlitz multiple poly-
    logarithms at algebraic points, preprint.
    [Car35] L. Carlitz, On certain functions connected with polynomials in a Galois
    field, Duke Math. J. 1 (1935), no. 2, 137-168.
    [CCM20] C.-Y. Chang, Y.-T. Chen and Y. Mishiba, Algebra structure of multiple
    zeta values in positive characteristic, arXiv:2007.08264.
    [CH21] Y.-T. Chen and R. Harada, On lower bounds of the dimension of multi-
    zeta values in positive characteristic, Doc. Math. 26 (2021), 537-559.
    [CM19] C.-Y. Chang and Y. Mishiba, On multiple polylogarithms in characteristic
    p: v-adic vanishing versus ∞-adic Eulerianness, Int. Math. Res. Not.
    (2019), no. 3, 923–947
    [CM21] C.-Y. Chang and Y. Mishiba, On a conjecture of Furusho over function
    fields, Invent. Math. 223, 49-102 (2021).
    115
    [CP12] C.-Y. Chang and M. A. Papanikolas, Algebraic independence of periods
    and logarithms of Drinfeld modules. With an appendix by B. Conrad, J.
    Amer. Math. Soc. 25 (2012), 123-150.
    [CPY19] C.-Y. Chang, M. A. Papanikolas and J. Yu, An effective criterion for
    Eulerian multizeta values in positive characteristic, J. Eur. Math. Soc.
    (2) 45, (2019), 405–440.
    [CY07] C.-Y. Chang and J. Yu, Algebraic relations among special zeta values in
    positive characteristic, Adv. Math. 216 (2007), 321-345.
    [Col82] R. F. Coleman, Dilogarithms, regulators and p-adic L-functions, Invent.
    Math. 69 (1982), no. 2, 171-208.
    [Den92a] L. Denis, Géométrie diophantienne sur les modules de Drinfeld, The
    Arithmetic of Function Fields, de Gruyter, Berlin (1992).
    [Den92b] L. Denis, Hauteurs canoniques et modules de Drinfeld, Math. Ann. 294,
    (1992), 213-223.
    [Dri74] V. G. Drinfeld, Elliptic modules, Math. Sb. (N.S.) 94 (1974), 594–627,
    656, Engl. transl.: Math. USSR-Sb. 23 (1976), 561–592.
    [Fur04] H. Furusho, p-adic multiple zeta values. I. p-adic multiple polylogarithms
    and the p-adic KZ equation, Invent. Math. 155 (2004), no. 2, 253-286.
    [FJ07] H. Furusho and A. Jafari Regularization and generalized double shuffle
    relations for p-adic multiple zeta values, Compos. Math. 143 (2007),
    1089–1107.
    [Gek89] E.-U. Gekeler, Quasi-periodic functions and Drinfeld modular forms,
    Compos. Math. 69 (1989), no. 3, 277–293.
    [Gos80] D. Goss, π-adic Eisenstein series for function fields, Compos. Math. 40
    (1980), 3–38.
    116
    [Gos96] D. Goss, Basic structures of function field arithmetic, Springer-Verlag,
    Berlin, 1996.
    [HJ20] U. Hartl and A.-K. Juschka, Pink’s theory of Hodge structures and the
    Hodge conjecture over function fields, t-Motives: Hodge Structures, Tran-
    scendence, and Other Motivic Aspects, European Mathematical Society,
    Zürich, 2020, pp. 31-182.
    [IKZ06] K. Ihara, M. Kaneko and D. Zagier, Derivation and double shuffle rela-
    tions for multiple zeta values, Compos. Math. 142 (2006), 307–338.
    [KL16] Y.-L. Kuan and Y.-H. Lin, Criterion for deciding zeta-like multizeta val-
    ues in positive characteristic, Exp. Math. 25 (2016), no. 3, 246–256.
    [Mas88] D. W. Masser, Linear relations on algebraic groups, New advances in
    transcendence theory (Durham,1986), 248–262, Cambridge Univ. Press,
    Cambridge, 1988.
    [Neu13] J. Neukirch, Algebraic Number Theory, Vol. 322. Springer Science &
    Business Media, 2013.
    [NP21] C. Namoijam and M. A. Papanikolas, Hyperderivatives of periods and
    quasi-periods for Anderson t-modules, to appear in Mem. Amer. Math.
    Soc.
    [Pap08] M. A. Papanikolas, Tannakian duality for Anderson-Drinfeld motives and
    algebraic independence of Carlitz logarithms, Invent. Math. 171 (2008),
    no. 1, 123–174.
    [Poo95] B. Poonen, Local height functions and the Mordell-Weil theorem for Drin-
    feld modules, Compos. Math. 97, (1995), 349-368.
    [Pp] M. A. Papanikolas, Log-algebraicity on tensor powers of the Carlitz mod-
    ule and special values of Goss L-functions, In preparation.
    117
    [Sti93] H. Stichtenoth, Algebraic Function Fields and Codes, Springer-Verlag,
    Berlin, 1993.
    [Tha04] D. S. Thakur, Function field arithmetic, World Scientific Publishing,
    River Edge NJ, 2004.
    [Tha10] D. S. Thakur, Shuffle relations for function field multizeta values, Int.
    Math. Res. Notices IMRN(2010), no.11, 1973–1980
    [Tod18] G. Todd, A Conjectural Characterization for Fq(t)-Linear Relations be-
    tween Multizeta Values, J. Number Theory 187, 264-287 (2018).
    [Thu95] J. L. Thunder, Siegel’s lemma for function fields, Michigan Math. J. 42
    (1995), no. 1, 147–162.
    [Yam10] G. Yamashita, Bounds for the dimensions of p-adic multiple L-value
    spaces, Doc. Math. 2010, Extra vol.: Andrei A. Suslin sixtieth birthday,
    687-723.

    QR CODE