研究生: |
陳彥宗 Chen, Yen-Tsung |
---|---|
論文名稱: |
德林費爾模的算術與正特徵的多重zeta值 Arithmetic of Drinfeld modules and multiple zeta values in positive characteristic |
指導教授: |
張介玉
Chang, Chieh-Yu |
口試委員: |
夏良忠
Hsia, Liang-Chung 佐藤信夫 Sato, Nobuo 王姿月 Wang, Tzu-Yueh 魏福村 Wei, Fu-Tsun 于靖 Yu, Jing |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 英文 |
論文頁數: | 118 |
中文關鍵詞: | 德林費爾模 、t-動機 、多重zeta值 |
外文關鍵詞: | Drinfeld modules, t-motives, multiple zeta values |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們關注兩類t模,包括德林費爾模和卡利茨模的張量冪。在第一部分,我們關注這些t模上代數點之間的線性關係。更準確地說,我們研究了在這些t模上有限多個代數點馬瑟定理[Mas88]的類比。我們估計出這些t模上代數點之間線性關係 生成元大小的上界。在第二部分,我們研究了正特徵中的多重zeta值。我們討論了一些線性獨立結果,並為某些多重zeta值所張出的向量空間建立了維度的下界。最後,我們研究了[CM21]中引入的v-進位多重zeta值。我們證明對於任何固定指標,v-進位多重zeta值對於除了有限多個素點v之外的所有素點都是v-進位整數。此外,我們證明了某些情況下古庄-山下猜想對於v-進位多重zeta值的類比。
In this dissertation, we focus on two families of t-modules including Drinfeld modules and tensor powers of the Carlitz module. In the first part, we focus on the linear relations among algebraic points on these $t$-modules. More precisely, we study an analogue of Masser's theorem [Mas88] for finitely many algebraic points on these t-modules and consequently we derive an upper bound for the generators of F_q[t]-linear relations among them. In the second part, we study multiple zeta values in positive characteristic. We discuss some linear independence results and we established a lower bound of the dimension for certain vector spaces spanned by these values. Finally, we investigate v-adic multiple zeta values introduced in [CM21]. We prove that for any fixed index v-adic multiple zeta values are v-adic integers for all but finitely many places. Furthermore, we prove an analogue of a conjecture of Furusho and Yamashita for v-adic multiple zeta values for v a finite place of degree one.
[And86] G. W. Anderson, t-motives, Duke Math. J. 53 (1986), no. 2, 457–502.
[ABP04] G. W. Anderson, W. D. Brownawell and M. A. Papanikolas, Deter-
mination of the algebraic relations among special Γ-values in positive
characteristic, Ann. of Math. (2) 160 (2004), no. 1, 237–313.
[AHY] K. Akagi, M. Hirose and S. Yasuda Integrality of p-adic multiple zeta
values and a bound for the space of finite multiple zeta values, In prepa-
ration.
[AT90] G. W. Anderson and D. S. Thakur, Tensor powers of the Carlitz module
and zeta values, Ann. of Math. (2) 132 (1990), no. 1, 159–191.
[AT09] G. W. Anderson and D. S. Thakur, Multizeta values for Fq[t], their period
interpretation, and relations between them, Int. Math. Res. Not. (2009),
no. 11, 2038–2055.
[BP20] W. D. Brownawell and M. A. Papanikolas, A rapid introduction to Drin-
feld modules, t-modules, and t-motives, t-Motives: Hodge Structures,
Transcendence, and Other Motivic Aspects, European Mathematical So-
ciety, Zürich, 2020, pp. 3-30.
[BV83] E. Bombieri and J. Vaaler, On Siegel’s lemma, Invent. Math. 73 (1983),
11-32.
[Cas59] J. W. S. Cassels, An introduction to the geometry of numbers, Springer,
Berlin Göttingen Heidelberg 1959.
114
[Cha09] C.-Y. Chang, A note on a refined version of Anderson-Brownawell-
Papanikolas criterion, J.Number Theory. 129 (2009), 729-738.
[Cha14] C.-Y. Chang, Linear independence of monomials of multizeta values in
positive characteristic, Compos. Math. 150 (2014), 1789-1808.
[Cha16] C.-Y. Chang, Linear relations among double zeta values in positive char-
acteristic, Cambridge J. Math. 4 (2016), No. 3, 289-331.
[Chat17] A. Chatzistamatiou, On integrality of p-adic iterated integrals, J. Alge-
bra, 474 (2017), 240–270.
[Che20] Y.-T. Chen, Linear equations on Drinfeld modules, arXiv:2011.00434.
[Che21] Y.-T. Chen, Integrality of v-adic multiple zeta values, to appear in Publ.
Res. Inst. Math. Sci.
[Che22] Y.-T. Chen, On the linear independence of θ-adic Carlitz multiple poly-
logarithms at algebraic points, preprint.
[Car35] L. Carlitz, On certain functions connected with polynomials in a Galois
field, Duke Math. J. 1 (1935), no. 2, 137-168.
[CCM20] C.-Y. Chang, Y.-T. Chen and Y. Mishiba, Algebra structure of multiple
zeta values in positive characteristic, arXiv:2007.08264.
[CH21] Y.-T. Chen and R. Harada, On lower bounds of the dimension of multi-
zeta values in positive characteristic, Doc. Math. 26 (2021), 537-559.
[CM19] C.-Y. Chang and Y. Mishiba, On multiple polylogarithms in characteristic
p: v-adic vanishing versus ∞-adic Eulerianness, Int. Math. Res. Not.
(2019), no. 3, 923–947
[CM21] C.-Y. Chang and Y. Mishiba, On a conjecture of Furusho over function
fields, Invent. Math. 223, 49-102 (2021).
115
[CP12] C.-Y. Chang and M. A. Papanikolas, Algebraic independence of periods
and logarithms of Drinfeld modules. With an appendix by B. Conrad, J.
Amer. Math. Soc. 25 (2012), 123-150.
[CPY19] C.-Y. Chang, M. A. Papanikolas and J. Yu, An effective criterion for
Eulerian multizeta values in positive characteristic, J. Eur. Math. Soc.
(2) 45, (2019), 405–440.
[CY07] C.-Y. Chang and J. Yu, Algebraic relations among special zeta values in
positive characteristic, Adv. Math. 216 (2007), 321-345.
[Col82] R. F. Coleman, Dilogarithms, regulators and p-adic L-functions, Invent.
Math. 69 (1982), no. 2, 171-208.
[Den92a] L. Denis, Géométrie diophantienne sur les modules de Drinfeld, The
Arithmetic of Function Fields, de Gruyter, Berlin (1992).
[Den92b] L. Denis, Hauteurs canoniques et modules de Drinfeld, Math. Ann. 294,
(1992), 213-223.
[Dri74] V. G. Drinfeld, Elliptic modules, Math. Sb. (N.S.) 94 (1974), 594–627,
656, Engl. transl.: Math. USSR-Sb. 23 (1976), 561–592.
[Fur04] H. Furusho, p-adic multiple zeta values. I. p-adic multiple polylogarithms
and the p-adic KZ equation, Invent. Math. 155 (2004), no. 2, 253-286.
[FJ07] H. Furusho and A. Jafari Regularization and generalized double shuffle
relations for p-adic multiple zeta values, Compos. Math. 143 (2007),
1089–1107.
[Gek89] E.-U. Gekeler, Quasi-periodic functions and Drinfeld modular forms,
Compos. Math. 69 (1989), no. 3, 277–293.
[Gos80] D. Goss, π-adic Eisenstein series for function fields, Compos. Math. 40
(1980), 3–38.
116
[Gos96] D. Goss, Basic structures of function field arithmetic, Springer-Verlag,
Berlin, 1996.
[HJ20] U. Hartl and A.-K. Juschka, Pink’s theory of Hodge structures and the
Hodge conjecture over function fields, t-Motives: Hodge Structures, Tran-
scendence, and Other Motivic Aspects, European Mathematical Society,
Zürich, 2020, pp. 31-182.
[IKZ06] K. Ihara, M. Kaneko and D. Zagier, Derivation and double shuffle rela-
tions for multiple zeta values, Compos. Math. 142 (2006), 307–338.
[KL16] Y.-L. Kuan and Y.-H. Lin, Criterion for deciding zeta-like multizeta val-
ues in positive characteristic, Exp. Math. 25 (2016), no. 3, 246–256.
[Mas88] D. W. Masser, Linear relations on algebraic groups, New advances in
transcendence theory (Durham,1986), 248–262, Cambridge Univ. Press,
Cambridge, 1988.
[Neu13] J. Neukirch, Algebraic Number Theory, Vol. 322. Springer Science &
Business Media, 2013.
[NP21] C. Namoijam and M. A. Papanikolas, Hyperderivatives of periods and
quasi-periods for Anderson t-modules, to appear in Mem. Amer. Math.
Soc.
[Pap08] M. A. Papanikolas, Tannakian duality for Anderson-Drinfeld motives and
algebraic independence of Carlitz logarithms, Invent. Math. 171 (2008),
no. 1, 123–174.
[Poo95] B. Poonen, Local height functions and the Mordell-Weil theorem for Drin-
feld modules, Compos. Math. 97, (1995), 349-368.
[Pp] M. A. Papanikolas, Log-algebraicity on tensor powers of the Carlitz mod-
ule and special values of Goss L-functions, In preparation.
117
[Sti93] H. Stichtenoth, Algebraic Function Fields and Codes, Springer-Verlag,
Berlin, 1993.
[Tha04] D. S. Thakur, Function field arithmetic, World Scientific Publishing,
River Edge NJ, 2004.
[Tha10] D. S. Thakur, Shuffle relations for function field multizeta values, Int.
Math. Res. Notices IMRN(2010), no.11, 1973–1980
[Tod18] G. Todd, A Conjectural Characterization for Fq(t)-Linear Relations be-
tween Multizeta Values, J. Number Theory 187, 264-287 (2018).
[Thu95] J. L. Thunder, Siegel’s lemma for function fields, Michigan Math. J. 42
(1995), no. 1, 147–162.
[Yam10] G. Yamashita, Bounds for the dimensions of p-adic multiple L-value
spaces, Doc. Math. 2010, Extra vol.: Andrei A. Suslin sixtieth birthday,
687-723.