研究生: |
林志保 Lin, Zhi-Bao |
---|---|
論文名稱: |
非均勻無線感測網路中利用多樣性負載平衡演算法以提升分散式估計之網路生命期 Network Lifetime Extension by Diversity-based Load Balancing Algorithm for Distributed Estimation in Inhomogeneous Wireless Sensor Networks |
指導教授: | 蔡育仁 |
口試委員: |
黃政吉
梁耀仁 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 35 |
中文關鍵詞: | 無線感測網路 、生命期延長 、多樣性 |
外文關鍵詞: | wireless sensor network, lifetime extension, diversity |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在過去幾年中,由於網路的蓬勃發展,無線感測網路已成為一個熱門的研究議題,其中又以分散式感測網路為最主要的網路類型。利用多個散佈在外的分散式感測器,並且透過一個資料融合中心來負責接收訊號並處理資訊,這便是分散式感測網路。在現實生活中,由於感測器有電力上的限制,因此在無線感測網路上如何發揮最大傳輸效率並維持網路生命週期為一個重要的議題。在過去的研究中,作者利用最小化中斷機率式功率分配機制達到延續網路生命週期的目的,由此研究得知維持無線感測網路的多樣性為延長網路生命週期的主要原因。
在本研究中,我們考慮在無線感測網路的環境底下執行分散式估測任務,在資料融合中心,透過由無線感測器所提供的觀測數據來得到此訊號的估計值,另外,我們將對無線感測網路多樣性有更進一步的定義,並且利用這項特性設計新的功率分配機制,在論文中的模擬部分,將會和過往的功率分配機制(最小化傳輸功率分配及最小化中斷機率式功率分配)互相比較網路生命週期。最後模擬的結果顯示出,我們所提出藉由維持無線感測網路多樣性以及避免過大功率消耗之下所設計出來的功率分配機制,能夠更進一步地提高網路的生命週期。
Network lifetime is a typical topic in wireless sensor network since the power supply of wireless sensors is energy limited and non-rechargeable. In this thesis, we consider a distributed estimation system, if we want to maintain the estimation quality and extend network lifetime, the research literature [10] has shown that the minimum next round outage probability (MNROP) strategy outperforms minimum total transmission power (MTP) strategy, the potential property of MNROP is keeping the network diversity. Therefore, we will discuss and analysis the diversity order of distributed estimation process in an inhomogeneous network system, and propose a improve power allocation strategy based on diversity information. Finally, the simulation result showed that proposed strategy can effectively maintain the contribution of high diversity order sensors, and has excellent performance on network lifetime.
[1] Y. Chen and Q. Zhao, “On the Lifetime of Wireless Sensor Networks,” IEEE Commun. Lett., vol. 9, pp.976-978, Nov. 2005.
[2] Y. Chen and Q. Zhao, “Maximizing the lifetime of sensor network using local information on channel state and residual energy,” in Proc. Conf. on Information Science and Systems (CISS), Mar. 2005.
[3] S. Cui, J. Xiao, A. Goldsmith, Z.-Q. Luo, and H. V. Poor, “Estimation diversity and energy efficiency in distributed sensing,” IEEE Trans. on Signal Proc., vol. 55, no. 9, pp. 4683 – 4695, Sept. 2007
[4] S. Cui, J. Xiao, A. Goldsmith, Z.-Q. Luo, and H. V. Poor, “Energy-efficient joint estimation in sensor networks: Analog vs. digital,” in Proc. IEEE Intl. Conf. Acoustics, Speech and Sig. Proc. (ICASSP), pp. 745–748, Mar, 2005,
[5] J. Wu, Q. Huang and T. Lee, “ Minimum Energy Decentralized Estimation via Exploiting the Statistical Knowledge of Sensor Noise Variance,” IEEE Trans. on Signal Proc., vol. 56, vo. 5, pp. 2171-2176, May, 2008.
[6] B.-H. Cheng, A. Nosratinia, and K. Yao, “Lifetime Maximization for Joint Estimation in Wireless Sensor Networks.” in Proc. Asilomar Conf. on Signals, Systems and Computers (ACSSC), Nov, 2006.
[7] Javier Matamoros and Carles Ant´on-Haro, “Opportunistic Power Allocation and Sensor Selection Schemes for Wireless Sensor Networks.” IEEE Trans. on Wireless Comm., vol. 9, no. 2, July 2010
[8] J. Matamoros and C. Ant´on-Haro, “Opportunistic power allocation schemes for the maximization of network lifetime in wireless sensor networks,” in Proc. IEEE Intl. Conf. on Acoustics, Speech and Signal Processing (ICASSP 2008), pp. 2273–2276, April 2008.
[9] J. Li and G. AlRegib, “Network Lifetime Maximization for Estimation in Multi-hop Wireless Sensor Networks,” IEEE Tans. on Signal Proc., Vol. 57, No. 7, pp. 2456 - 2466, July 2009.
[10] Kun-Yu Lee, “Network Lifetime Extension for Distributed Estimation in Wireless Sensor Networks,” Thesis of Master degree in National Tsing Hua University, July 2010.
[11] S. M. Kay, “Fundamentals of Statistical Signal Processing: Estimation Theory,” Prentice-Hall, 1993
[12] Edwin K. P. Chong and Stanislaw H. Zak, “An Introduction to Optimization,” Third Edition, Wiley, 2008.
[13] S. Boyd and L. Vandenberghe, “Convex Optimization”. Cambridge univ. press, 1993.