研究生: |
黃啟昊 Huang, Chi-Hao |
---|---|
論文名稱: |
雙光子聚合之自動對位模組 Development of the Alignment Module for Two-Photon Polymerization System |
指導教授: |
傅建中
Fu, Chien-Chung |
口試委員: |
李三良
Lee, San-Liang 項維巍 Hsiang, Wei-Wei |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 53 |
中文關鍵詞: | 雙光子聚合 、對位 、視覺伺服控制 、姿態預測 、對位標記 |
外文關鍵詞: | Two-Photon Polymerization, alignmnet, visual servo control, pose estimation, alignmnet marker |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
雙光子聚合技術(Two Photon Polymerization)結合光致聚合(Photon Polymerization)與雙光子吸收(Two Photon Absorption)兩種原理,透過雷射直寫在光阻中,可以任意製造奈微米等級的三維微結構,應用在機械、電機、光電、通訊、化工、材料、醫學、生物等領域。
本研究將開發應用與雙光子聚合技術之對位系統,希望將原本只能製作單一或是陣列的雙光子聚合結構,製作在基板或是微系統中的特定位置,以達到和其他結構作精準地結合,使雙光子聚合技術製造的微結構可以更廣泛的應用在各種微系統中。
本研究利用視覺伺服控制,透過設計好的對位標記與機器視覺中的姿態預測來找出如何將雷射聚焦點(雙光子聚合發生點)移動到基板上的特定位置,以此讓雙光子聚合技術製造的結構能夠在基板或微系統中有特定的位置與轉向。
最終本研究完成雙光子聚合之對位,成功加工結構在基板座標系的特定位置,並針對對位的誤差與研究限制作探討並製作應用於自駕車感測元件Lidar中的正反面透鏡。期望雙光子聚合技術能基於此對位基礎上達到更廣泛的應用。
Two-Photon Polymerization combines principle of Photon Polymerization and Two-Photon Absorption to produce nano-scales 3d structures from photoresist by laser direct writing technology. Two-Photon Lithography’s structure is widely used in Mechanic, Electronic, Optoelectronics, Communication, Chemical, Medicine, and Biology.
This study developed a Two-Photon Polymerization alignment module to precisely align the 3d structure on the substrate’s specific position and combine it with other elements on the substrate or in the microsystem. This alignment module can expand the application of Two-Photon Polymerization.
Using the technique of visual servo control, a well-designed alignment marker, and pose estimation, this study investigated a method to align the laser focus point where Two-Photon Polymerization occurred to the specific position on the substrate.
In the outcomes, this study completes the alignment module of Two-Photon Polymerization and analysis the error of alignment. We also build an element of Lidar which is used in the self-driving car by this alignment module to show the application in the real world. This study can be the basic alignment method to help develop more complex Two-Photon Polymerization applications.
1. Farsari, M. and B.N. Chichkov, Two-photon fabrication. Nature photonics, 2009. 3(8): p. 450-452.
2. Dietrich, P.-I., et al., Printed freeform lens arrays on multi-core fibers for highly efficient coupling in astrophotonic systems. Optics express, 2017. 25(15): p. 18288-18295.
3. Marino, A., et al., A 3D Real‐Scale, Biomimetic, and Biohybrid Model of the Blood‐Brain Barrier Fabricated through Two‐Photon Lithography. Small, 2018. 14(6): p. 1702959.
4. Maruo, S., O. Nakamura, and S. Kawata, Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Optics letters, 1997. 22(2): p. 132-134.
5. ZHOU, Xiaoqin; HOU, Yihong; LIN, Jieqiong. A review on the processing accuracy of two-photon polymerization. Aip Advances, 2015, 5.3: 030701.
6. OSTENDORF, Andreas; CHICHKOV, Boris N. Two-photon polymerization: a new approach to micromachining. Photonics spectra, 2006, 40.10: 72.
7. GENG, Qiang, et al. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nature communications, 2019, 10.1: 1-7.
8. CÔNSOLI, Pedro M., et al. Feature size reduction in two‐photon polymerization by optimizing resin composition. Journal of Polymer Science Part B: Polymer Physics, 2018, 56.16: 1158-1163.
9. Cicha, K., et al., Young’s modulus measurement of two-photon polymerized micro-cantilevers by using nanoindentation equipment. Journal of Applied Physics, 2012.
10. FUJISHIRO, Yoko; FURUKAWA, Taichi; MARUO, Shoji. Simple autofocusing method by image processing using transmission images for large-scale two-photon lithography. Optics express, 2020, 28.8: 12342-12351.
11. LEE, Xian Yeow, et al. Automated detection of part quality during two-photon lithography via deep learning. Additive Manufacturing, 2020, 36: 101444.
12. KUO, W. M., et al. Precision nano-alignment system using machine vision with motion controlled by piezoelectric motor. Mechatronics, 2008, 18.1: 21-34.
13. HE, Sifeng, et al. A flip-chip alignment system with the property of deviation
self-correction at the nanoscale. IEEE Transactions on Industrial Electronics, 2020, 68.3: 2345-2355.
14. HUTCHINSON, Seth; HAGER, Gregory D.; CORKE, Peter I. A tutorial on
visual servo control. IEEE transactions on robotics and automation, 1996, 12.5: 651-670.
15. CHEN, Jiale, et al. Survey on 6D Pose Estimation of Rigid Object. In: 2020 39th Chinese Control Conference (CCC). IEEE, 2020. p. 7440-7445.
16. LU, Xiao Xin. A review of solutions for perspective-n-point problem in camera
pose estimation. In: Journal of Physics: Conference Series. IOP Publishing, 2018. p. 052009.
17. BAETEN, Johan; DE SCHUTTER, Joris. Visual Servoing: A 3D Alignment
Task. In: Integrated Visual Servoing and Force Control. Springer, Berlin, Heidelberg, 2003. p. 73-88.
18. KAWAMURA, Munehiro, et al. Unambiguous determination of 3D fiber
orientation distribution in thermoplastic composites using SAM image of elliptical mark and interference fringe. Journal of composite materials, 2005, 39.4: 287-299.
19. GARRIDO-JURADO, Sergio, et al. Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognition, 2014, 47.6: 2280-2292.
20. STAMPFL, Jürgen; LISKA, Robert; OVSIANIKOV, Aleksandr. Multiphoton lithography: Techniques, materials, and applications. John Wiley & Sons, 2016.
21. GAO, Xiao-Shan, et al. Complete solution classification for the perspective-
three-point problem. IEEE transactions on pattern analysis and machine intelligence, 2003, 25.8: 930-943.
22. GÖPPERT-MAYER, M. Elementary actions with two quantum leaps. Ann.
Physik, 1931, 9: 273.
23. KAISER, W.; GARRETT, C. G. B. Two-photon excitation in Ca F 2: Eu
2+. Physical review letters, 1961, 7.6: 229.
24. ZHANG, Zhengyou. A flexible new technique for camera calibration. IEEE Transactions on pattern analysis and machine intelligence, 2000, 22.11: 1330-1334.
25. KATO, Jun-ichi, et al. Multiple-spot parallel processing for laser
micronanofabrication. Applied physics letters, 2005, 86.4: 044102.