研究生: |
黃基毓 Chi-Yu Huang |
---|---|
論文名稱: |
聚氰基丙烯酸酯奈米載藥粒子的研究 Study on Drug-Loaded Poly(alkyl 2-cyanoacrylate) Nanoparticles |
指導教授: |
李育德
Yu-Der Lee |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2006 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 148 |
中文關鍵詞: | 氰基丙烯酸酯 、奈米粒子 、藥物釋放 、紫杉醇 、迷你乳化 |
外文關鍵詞: | cyanoacrylate, nanoparticle, control release, taxol, miniemulsion |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
聚氰基丙烯酸烷基酯(PACA)是具生物可分解和生物相容性的材料,利用乳化聚合反應可製備載負多種不同種類藥物的PACA奈米粒子。由於此材料的降解速率甚快,因此,特別適合做為抗腫瘤藥物的載體粒子。於PACA奈米粒子的研究中,一直只使用單一種單體聚合而成的均相PACA粒子,其快速且無法控制的降解速率,限制此材料應用於長效型和需具有特定藥物釋放速率的載體材料。相較於其它常用的藥物載體材料,PACA過於快速的降解速率易使得產生的降解產物濃度過高,造成此材料的毒性偏高。因此,在本研究的第一部份主要是製備和鑑定可控制降解速率和親疏水性的核-殼(Core-shell)奈米粒子。此奈米粒子主要是使用氰基丙烯酸正丁酯(n-Butyl cyanoacrylate; BCA)和氰基丙烯酸異辛酯(2-Octyl cyanoacrylate; OCA)兩種單體,在0.01 N的鹽酸水溶液中,以Pluronic F127為乳化劑,進行陰離子乳化共聚合反應所製得。各種不同BCA/OCA進料組成所製得的粒子,均為粒徑小於100 nm、粒徑均一度高且形狀為完整圓球形的粒子。生成粒子的粒徑大小、表面電位(Zeta potential)高低、高分子的分子量與親疏水性和降解速率,均受BCA及OCA組成的影響。體外粒子水解研究中,顯示改變共聚物中BCA和OCA的組成比例,可控制粒子的水解速率,最高與最低水解速率間的差異可達200倍。分析粒子與生成的共聚高分子,推論由BCA/OCA所組成的粒子形態,粒子的內層可能是由富含OCA的共聚高分子鏈端所組成;而富含BCA的共聚高分子鏈端,為位於粒子的外殼層的核-殼粒子結構。體外細胞毒性的結果顯示,POCA的奈米粒子的毒性相較於PBCA的奈米粒子,其毒性甚低;然而,BCA/OCA所組成的奈米粒子毒性卻與PBCA粒子的毒性相近。
一般製備載藥PACA粒子的方式,是將藥物先溶於反應分散液中,於氰基丙烯酸烷基酯單體進行乳化聚合反應過程中,將藥物包覆於粒子內;或是於PACA粒子生成後,再將藥物溶入膠體乳液內,生成的粒子利用吸附的方式載負藥物。所以可被粒子載負的最大藥物重量,即為藥物可溶解在分散液中的重量。使用此傳統乳化聚合法製備載負如紫杉醇的高疏水性藥物之PACA奈米粒子,可預期所得載藥PACA粒子的載藥率甚低。
為解決PACA無法製備載負高疏水性藥物粒子的缺點,本論文第二部份利用迷你乳化聚合反應,使用Pluronic F127為界面活性劑,以求製備兼具高載藥率和高包覆率的載負紫杉醇之PBCA奈米粒子。實驗結果顯示,利用迷你乳化聚合反應所得載負紫杉醇之PBCA粒子,不論在載藥率或包覆率,均為乳化聚合反應所製得載藥粒子的三倍(進料BCA中含有紫杉醇濃度為1 % (w/w))。使用具不同紫杉醇濃度的BCA單體溶液,經由迷你乳化聚合反應所製得的載藥粒子,載藥率和包覆率均隨紫杉醇在BCA單體中的含量增加而增加,最高可得載藥率4 % (w/w) 的載藥粒子,同時對藥物的包覆率亦達80 % (w/w)。雷射測徑儀測得利用迷你乳化聚合反應製備的載藥PBCA粒子,粒子的平均粒徑約為100 nm,且由場發射掃描式電子顯微鏡觀察載藥PBCA粒子,顯現所得粒子為獨立完整的球狀粒子。X射線繞射儀(XRD)所測得載負紫杉醇之PBCA粒子的圖譜,顯示不論是利用乳化聚合反應或迷你乳化聚合反應所製備的載藥粒子,均未有紫杉醇的結晶峰產生。因此,可推論所製備載負紫杉醇的PBCA粒子,紫杉醇可能是以分子、無結晶或是小於XRD偵測極限的小結晶形態分佈於載藥粒子中。載負紫杉醇之PBCA粒子於pH=7.4的磷酸鹽緩衝溶液(PBS)中的藥物釋放動力曲線顯示,乳化聚合反應製備的載藥粒子呈現明顯雙階段的釋放曲線,初始時粒子表層的藥物被快速的釋出,隨後,粒子內的藥物才被緩慢的釋出。然而,相較於乳化聚合反應,迷你乳化聚合反應所製備的載藥粒子,藥物突釋效應的程度較低,顯示利用迷你乳化聚合反應所製備的載藥粒子,有較大比例的藥物分佈於載藥粒子的內部。利用乳化及迷你乳化所製備的載藥PBCA粒子,於PBS中進行藥物釋放96小時後,均有80 % (w/w)以上的藥物可自粒子中被釋放出來。再者,藥物釋放速率隨載藥粒子載藥率增加而降低。
Polyalkylcyanoacrylate (PACA) is a biodegradable and biocompatible material and PACA nanoparticles prepared via emulsion are capable of encapsulating various kinds of drugs and are eminently suitable as anti-tumor drug delivery carrier for treatment of cancer since it’s characteristic of rapid degradation rate. The type used in application and study is homopolymer, fast and uncontrollable degradation rate limit PACA as drug carrier applied for long-term release and met the required drug release rate on various clinical treatments. Compared with other commonly used materials, excessively fast degradation rate of PACA causes the higher cytotoxicity arising from the high concentration of degradation products. Hence, the first part of this research, core-shell type of nanoparticles with manipulated degradation rate and balanced hydrophilic/hydrophobic properties were designed and characterized. The nanoparticles based on the copolymers of n-butyl cyanoacrylate (BCA) and 2-octyl cyanoacrylate (OCA) were prepared by anion emulsion polymerization in 0.01 N HCl solution with pluronic F127 as the stabilizer. These nanoparticles were spherical in shape and with size smaller than 100 nm in a narrow distribution. The particle size, zeta potential, molecular weight, hydrophobicity and degradation rate of the copolymer depended on its composition significantly. In vitro chemical hydrolytic studies indicated that the degradation rate of the NPs could be controlled over 200-fold by adjusting the BCA/OCA ratio. Differential scanning calorimetry measurements verified the existence of copolymer with tapered structure which was induced by the reactivity difference of the monomers. A BCA/OCA core-shell structure is postulated that the OCA rich segments were mainly located in the core of the NPs. The cytotoxicity of poly(2-octyl cyanoactylate) (POCA) is quite lower than that of poly(n-butyl cyanoacrylate) (PBCA) and the toxicity of poly(BCA-co-OCA) nanoparticles is similar to that of PBCA nanoparticles.
The most common approach of preparing drug-loaded PACA nanoparticles is either incorporation during the process of emulsion polymerization or adsorption by the surface of formed nanoparticles. The maximum weight of encapsulated drug is limited to the drug solubility in medium. It is expected that drug-loaded PACA nanoparticles with low drug loading efficiency for hydrophobic drugs such as the most representative drug of paclitaxel.
The second part of this study, the strategy of miniemulsion polymerization is successful to obtain stable paclitaxel-loaded PBCA nanoparticles containing high loading and encapsulation efficiency simultaneously were achieved in the presence of pluronic F127. It was found that both drug loading and encapsulation efficiencies of PBCA nanoparticles prepared by miniemulsion were higher (approximately 3 times) than those obtained by emulsion with similar paclitaxel content in the feed monomer (1 % (w/w)). Furthermore, the loading and encapsulation efficiencies increased concurrently (to a maximum of 4 % and 80 % respectively) with increasing paclitaxel content and these nanoparticles were spherical in shape and with size near 100 nm. XRD patterns revealed that paclitaxel in particles was distributed in the molecular or amorphous state or in the form of small crystals. The in vitro drug release profile of drug-loaded PBCA nanoparticles prepared from miniemulsion exhibited a gradual release; more than 80 % (w/w) of the paclitaxl was released after 96 hours. Thus, miniemulsion polymerization could be used as a successful strategy to effectively encapsulate highly hydrophobic drugs in the PACA nanoparticles.
Antonietti, M., Landfester, K., 2002. Polyreactions in miniemulisons. Prog. Polym. Sci. 27, 689-757.
Asano, M., Fukuzaki, H., Yoshida, M., Kumakura, M., Mashimo, T., Yuasa, H., Imai, K., Yamanaka, H., Suzuki, K., 1989. In vivo characteristics of low-molecular weight copoly(L-lactic acid/glycolic acid) formulations with controlled release of luteinizing hormone-releasing hormone agonist. J. Control. Rel., 9, 111-122.
Aslamazova, T.R., 1995. Emulsifier-free latexes and polymers on their base. Prog. Org. Coat., 25, 109-167.
Aspden, T.J., Mason, J.D., Jones, N.S., 1997. Chitosan as a nasal delivery system: The effect of chitosan solutions on in vitro and in vivo mucociliary transport rates in human turbinates and volunteers. J. Pharm. Sci. 86, 509-513.
Aymonier, A., Papon, E., Villenave, J.J., Tordjeman, Ph., Pirri, R., Gérard, P., 2001. Design of pressure-sensitive adhesives by free-radical emulsion copolymerization of methyl methacrylate and 2-ethylhexyl acrylate. 1. kinetic study and tack properties. Chem. Mater., 13, 2562-2566.
Bechthold, N., Tiarks, F., Willert, M., Landfester, K., Antonietti, M., 2000. Miniemulsion polymerization: Application and new materials. Macromol. Symp. 151, 549-555.
Behan, N., Birkinshaw, C., Clarke, N., 2001a. Poly n-butyl cyanoacrylates: a mechanistic study of polymerization and particle formation. Biomaterials, 22, 1335-1344.
Behan, N., Birkinshaw, C., 2001b. Preparation of poly(butyl cyanoacrylate) nanoparticles by aqueous dispersion polymerization in the presence of insulin. Macromol. Rapid Commun., 22, 41-43.
Brannon-Peppas, L., 1995. Recent advances on the use of biodegradable microparticles and nanoparticles in controlled drug delivery., Int. J. Pharm., 116, 1-9.
Brasseur, F., Couvreur, P., Kante, B., Deckers-Passau, L., Roland, M., Deckers, C., Speiser, P., 1980. Actinomycin-D adsorbed on polymethylcyanoacrylate nanoparticles – increased efficiency against an experimental tumor. Eur. J. Cancer 10, 1441-1445.
Brigger, I., Dubernet, C., Couvreur, P., 2002. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev. 54, 631-651.
Chawla, J.S., Amiji, M.M., 2002. Biodegradable poly(epsilon-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. Int. J. Pharm. 249, 127-138.
Chen, D.R., Bei, J.Z., Wang, S.G., 2000. Polycaprolactone microparticles and their biodegradation. Polym. Degrad. Stabil. 67, 455-459.
Chern, C.S., Chen, T.J., Liou, Y.C., 1998. Miniemulsion polymerization of styrene in the presence of a water-insoluble blue dye. Polymer 39, 3767-3777.
Chouinard, F., Buczkowski, S., Lenaerts, V., 1994. Poly(alkylcyanoacrylate) nanocapsules: physicochemical characterization and mechanism of formation. Pharm. Res. 11, 869-874.
Ciapetti, G., Stea, S., Cenni, E., Sudanese, A., Marraro, D., Toni, A., Pizzoferrato, A., 1994. Cytotoxicity testing of cyanoacrylates using direct-contact assay on cell-culture. Biomaterials, 5, 63-67.
Couvreur, P., Fattal, E., Alphandary, H., Puisieux, F., Andremont, A., 1992. Intracellular targeting of antibiotics by means of biodegradable nanoparticles. J. Control. Release 19, 259-268.
Couvreur, P., Kante, B., Lenaerts, V., Scailteur, V., Roland, M., Speiser, P., 1980. Tissue distribution of antitumor drugs associated with polyalkylcyanoacrylate nanoparticles. J. Pharm. Sci. 69, 199-202.
Couvreur, P., Kante, B., Roland, M., Guiot, P., Baudin, P., Speiser, P., 1979a. Polyalkylcyanoacrylate nanocapsules as potential lysosomotropic carriers: preparation, morphological and sorptive properties. J. Pharm. Pharmacol., 31, 331-332.
Couvreur, P., Kante, B., Roland, M., Speiser, P., 1979b. Adsorption of antineoplastic drugs to polyalkylcyanoacrylate nanoparticles and their release in calf serum. J. Pharmacol. Sci., 68, 1521-1524.
Couvreur, P., Roblot-Treupel, L., Poupon, M.F., Brasseur, F., Puisieux, F., 1990. Nanoparticles as microcarriers for anticancer drugs. Adv. Drug Deliv. Rev. 5, 209-230.
Damgé, C., Michel, C., Aprahamian, M., Couvreur, P., Devissaguet, J.P., 1990. Nanocapsules as carriers for oral peptide delivery. J. Control. Rel., 13, 233-239.
Davis, S.S., Illum, L., 1983. The targeting of drugs using polymeric microspheres. Brit. Polym. J., 15, 160-164.
Douglas, S.J., Illum, L., Davis, S.S., Kreuter, J., 1984. Particle size and size distribution of poly(butyl 2-cyanoacrylate) nanoparticles. I. Influence of physicochemical factors. J. Colloid Interface Sci. 101, 149-158.
Douglas, S.J., Illum, L., Davis, S.S., Kreuter, J., 1985. Particle size and size distribution of poly(butyl 2-cyanoacrylate) nanoparticles. II. Influence of stabilizers. J. Colloid Interface Sci. 103, 154-163.
Duro, R., Gómez-Amoza, J.L., Martínez-Pacheco, R., Souto, C., Concheiro, A., 1998. Adsorptionof polysorbate 80 on pyrantel pamoate : effects on suspension stability. Int. J. Pharm. 165, 211-216.
Erdem, B., Sudol, E.D., Dimonie, V.L., El-Aasser, M.S., 2000. Encapsulation of inorganic particles via miniemulsion polymerization. II. Preparation and characterization of styrene miniemulsion droplets containing TiO2 particles. J. Polym. Sci. Part A: Polym. Chem. 38, 4431-4440.
Fattal, E., Vauthier, C., Aynie, I., Nakada, Y., Lambert, G., Malvy, C., Couvreur, P., 1998. Biodegradable polyalkylcyanoacrylate nanoparticles for the delivery of oligonucleotides. J. Control. Release 53, 137-143.
Feng, S.S., Huang, G.F., 2001. Effects of emulsifiers on the controlled release of paclitaxel (Taxol (R)) from nanospheres of biodegradable polymers. J. Control. Release 71, 53-69.
Fernandez-Urrusuno, R., Calvo, P., Remunan-Lopez, C., Vila-Jato, J.L., Alonso, M.J., 1999. Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm. Res. 16, 1576-1581.
Gan, Z., Yu, D., Zhong, Z., Ling, Q., Jing, X., 1999. Enzymatic degradation of poly(ε-caprolactone)/poly(DL-lactide) blends in phosphate buffer solution. Polymer 40, 2859-2862.
Gelperina, S.E., Smirnova, Z.S., Khalanskiy, A.S., Skidan, I.N., Bobruskin, A.I., Kreuter, J., 2000. Proceedings of the 3rd Word Meeting APV/APGI, Berlin, April, pp. 441.
Gref, R., Luck, M., Quellec, P., Marchand, M., Dellacherie, E., Harnisch, S., Blunk, T., Muller, R.H., 2000, 'Stealth' corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf. B 18, 301-313.
Gregoriadis, G., 1988. Liposomes as Drug Carriers, Wily.
Grundke, K., Zschoche, S., Pöschel, K., Gietzelt, T., Michel, S., Friedel, P., Jehnichen, D., Neumann, A.W., 2001. Wettability of maleimide copolymer films: effect of the chain length of n-alkyl side groups on the solid surface tension. Macromolecules, 34, 6768-6775.
Guise, V., Drouin, J.Y., Benoit, J., Mahuteau, J., Dumont, P., Couvreur, P., 1990. Vidarabine-loaded nanoparticles : A physicochemical study. Pharm. Res. 7, 736-741.
Hans, M.L., Lowman, A.M., 2002. Biodegradable nanoparticles for drug delivery and targeting. Curr. Opin. Solid State Mat. Sci. 6, 319-327.
Harkins, W.D., 1947. A general theory of the mechanism of emulsion polymerization. J. Am. Chem. Soc. 69, 1428-1444.
Hassan, E.E.M., 2003. Method of making nanoparticles of substantially water insoluble materials, US Patent 6 623 761, 23 Sep.
Henry, L., 1986. Cyanoacrylate Resins-The Instant Adhesives, 3nd Ed., Pasadena Technology Press: Los Angeles, CA.
Hollander, J.E., Singer, A., 1999. Laceration managemant. J. Ann. Emerg. Med., 34, 356-367.
Holzapfel, V., Musyanovych, A., Landfester, K., Lorenz, M.R., Mailänder, V., 2005. Preparation of fluorescent carboxyl and amino functionalized polystyrene particles by miniemulsion polymerization as markers for cells. Macromol. Chem. Phys. 206, 2440-2449.
Illum, L., Khan, M.A., Mak, E., Davis, S.S., 1986. Evaluation of carrier capacity and release characteristics for poly(butyl 2-cyanoacrylate) nanoparticles. Int. J. Pharm. 30, 17-28.
Iscan, Y.Y., Hekimoglu, S., Kas, S., Hincal, A.A., 1999. Formulation and characterization of solid lipid nanoparticles for skin delivery, conference “lipid and surfactant dispersied systems”, Moscow, Proceedings Book, 163.
Jain, K.K., 2006. Nanoparticles as targeting ligands. Trends in Biotechnol. 24, 143-145.
Janes, K.A., Calvo, P., Alonso, M.J., 2001a. Polysaccharide colloidal particles as delivery systems for macromolecules. Adv. Drug Deliv. Rev. 47, 83-97.
Janes, K.A., Fresneau, M.P., Marazuela, A., Fabru, A., 2001b. Chitosan nanoparticles as delivery systems for doxorubicin. J. Control. Release 73, 255-267.
Jeon, S.I., Lee, J.H., Andrade, J.D., de Gennes, P.G., 1991. Protein surface interactions in the presence of polyethylene oxide. 1. Simplified theory. J. Colloid Interface Sci. 142, 149-158.
Jung, T., Breitenbach, A., Kissel, T., 2000. Sulfobutylated poly(vinyl alcohol)-graft-poly(lactide-co-glycolide)s facilitate the preparation of small negatively charged biodegradable nanospheres. J. Control. Release, 67, 157-169.
Kabanov, A.V., Batrakova, E.V., Alakhov, V.Y., 2002. Pluronic((R)) block copolymers for overcoming drug resistance in cancer. Adv. Drug Deliv. Rev., 54, 759-779.
Kattan, J., Droz, J.P., Couvreur, P., Marino, J.P., Boutan-Laroze, A., Rougier, P., Brault, P., Vranckx, H., Grognet, J.M., Sancho-Garnier, H., 1992. Phase-I clinical-trial and pharmacokinetic evaluation of doxorubincin carrierd by polyisohexylcyanoacrylate nanoparticles. Invest. New Drugs, 10, 191-199.
Kim, G.J., Nie, S., 2005. Targeted cancer nanotherapy. Materials today, 8, 28-33.
Kim, N., Sudol, E.D., Dimonie, V.L., El-Aasser, M.S., 2004. Comparison of conventional and miniemulsion copolymerizations of acrylic monomers using poly(vinyl alcohol) as the sole stabilizer. Macromolecules 37, 2427-2433.
Kreuter, J., 1988. Possibilities of using nanoparticles as carriers for drugs and vaccines. J. Microencapsul., 5, 115-127.
Kreuter, J., 1991. Nanoparticle-based drug delivery systems. J. Control. Rel., 16, 169-176.
Kreuter, J.,1994. Nanoparticles. In: Kreuter, J. (Ed.), Colloidal drug delivery systems, Vol. 66, Marcel Dekker Inc, New York, pp. 219-342.
Kreuter, J., 2001. Nanoparticulate systems for brain delivery of drugs. Adv. Drug Deliv. Rev., 47, 65-81.
Kreuter, J., Liehl, E., 1981. Long-term studies of microencapsulated and adsorbed influenza vaccine nanoparticles J. Pharm. Sci. 70, 367-371.
Landfester, K., Bechthold, N., Förster, S., Antonietti, M., 1999. Evidence for the preservation of the particle identity in miniemulsion polymerization. Macromol. Rapid Commun. 20, 81-84.
Lelu, S., Novat, C., Graillat, C., Guyot, A., Bourgeat-Lami, E., 2003. Encapsulation of an organic phthalocyanine blue pigment into polystyrene latex particles using a miniemulsion polymerization process. Polym. Int. 52, 542-547.
Lachman, L., Lieberman, H.A., Kanig, J.L., 1986. The Theory and Practice of Industrial Pharmacy, 2nd ed. Chapter 2, “Milling”, p. 45.
Lasic, 1997. Recent developments in medical applications of liposomes: sterically stabilized liposomes in cancer therapy and gene delivery in vivo. J. Control. Release 48, 203-222.
Lenaerts, V., Couvreur, P., Christiaens-Leyh, D., Joiris, E., Roland, M., Rollman, B., Speiser, P., 1984. Degredation of poly(isobutyl cyanoacrylate) nanoparticles. Biomaterials, 5, 65-68.
Leonard, F., Kulkarni, R.K., Brandes, G., Nelson, J., Cameron, J.J., 1966. Synthesis and degradation of poly(alkyl α-cyanoacrylates). J. Appl. Polym. Sci., 10, 259-272.
Lherm, C., Müller, R.H., Puisieux, F., Couvreur, P., 1992. Alkylcyanoarylate drug carriers : II. Cytotoxicity of cyanoacrylate nanoparticles with different alkyl chain length. Int. J. Pharm., 84, 13-22.
Li, Y.P., Ogris, M., Wagner, E., Pelisek, J., Rüffer, M., 2003. Nanoparticles bearing polyethyleneglycol-coupled transferrin as gene carriers: preparation and in vitro evaluation. Int. J. Pharm. 259, 93-101.
Liebmann, J., Cook, J.A., Mitchell, J.B., 1993. Cremophor EL, solvent for paclitaxel, and toxicity. Lancet 342, 1428.
Limouzin, C., Caviggia, A., Ganachaud, F., Hemery, P., 2003. Anionic polymerization of n-butyl cyanoacrylate in emulsion and miniemulsion. Macromolecules 36, 667-674.
Liggins, R.T., Burt, H.M., 2002. Polyether-polyester diblock copolymers for the preparation of paclitaxel loaded polymeric micelle formulations. Adv. Drug Deliv. Rev. 54, 191-202.
Liggins, R.T., Hunter, W.L., Burt, H.M., 1997. Solid-state characterization of paclitaxel. J. Pharm. Sci. 86, 1458-1463.
Limouzin, C., Caviggia, A., Ganachaud, F., Hémery, P., 2003. Anionic polymerization of n-butyl cyanoacrylate in emulsion and miniemulsion. Macromolecules, 36, 667-674.
Lode, K., Fichtner, I., Kreuter, J., Berndt, A., Diederichs, J.E., Reszka, R., 2001. Influence of surface-modifying surfactants on the pharmacokinetic behavior of C-14-poly (methylmethacrylate) nanoparticles in experimental tumor models. Pharm. Res. 18, 1613-1619.
Malmsten, M., 2002. Surfactants and polymers in drug delivery. Marcel Dekker, New York.
Matsumoto, J., Nakada, Y., Sakurai, K., Nakamura, T., Takahashi, Y., 1999. Preparation of nanoparticles consisted of poly(L-lactide)-poly(ethylene glycol)-poly(L-lactide) and their evaluation in vitro. Int. J. Pharm. 185, 93-101.
Mitra, A., Lin, S., 2003. Effect of surfactant on fabrication and characterization of paclitaxel-loaded polybutylcyanoacrylate nanoparticulate delivery systems. J. Pharm. Pharmacol. 55, 895-902.
Mitra, S., Gaur, U., Gosh, P.C., Maitra, A.N., 2001. Tumour targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier. J. Control. Release 74, 317-323.
Moghimi, S.M., Hunter, A.C., Murray, J.C., 2001. Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacol. Rev. 53, 283-318.
Mosmann, T., 1983. Rapid colorimetric assay for cellular growth and survival - Application to proliferation and cyto-toxicity assays. J. Immunol. Methods, 65, 55-63.
Mu, L., Feng, S.S., 2003. A novel controlled release formulation for the anticancer drug paclitaxel (Taxol®): PLGA nanoparticles containing vitamin E TPGS. J. Control. Release 86, 33-48.
Müller, R.H., Lherm, C., Herbort, J., Blunk, T., Couvreur, P., 1992. Alkylcyanoacrylate drug carriers: I. Physicochemical characterization of nanoparticles with different alkyl chain length. Int. J. Pharm. 84, 1-11.
Müller, R.H., Mader, K., Gohla, S., 2000. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur. J. Pharm. Biopharm. 50, 161-177.
Murakami, H., Kobayashi, M., Takeuchi, H., Kawashima, Y., 1999. Preparation of poly(DL-lactide-co-glycolide) nanoparticles by modified spontaneous emulsification solvent diffusion method. Int. J. Pharm. 187, 143-152.
Nakada, Y., Fattal, E., Foulquier, M., Couvreur, P., 1996. Pharmacokinetics and biodistribution of oligonucleotide adsorbed onto poly(isobutylcyanoacrylate) nanoparticles after intravenous administration in mice. Pharm. Res., 13, 38-43.
Odian, G., 2004. Principles of Polymerization, 4nd Ed., John Wily and Sons, New York.
Oh, K.S., Lee, K.E., Han, S.S., Cho, S.H., Kim, D., Yuk, S.H., 2005. Formation of core/shell nanoparticles with a lipid core and their application as a drug delivery system. Biomacromolecules 6, 1062-1067.
Ooya, T., Lee, J., Park, K., 2003. Effects of ethylene glycol-based graft, star-shaped, and dendritic polymers on solubilization and controlled release of paclitaxel. J. Control. Release 93, 121-127.
O’Sullivan, C., Birkinshaw, C., 2002. Hydrolysis of poly(n-butylcyanoacrylate) nanoparticles using esterase. Polym. Degrad. Stabil. 78, 7-15.
O’Sullivan, C., Birkinshaw, C., 2004. In vitro degradation of insulin-loaded poly(n-butylcyanoacrylate) nanoparticles. Biomaterials, 25, 4375-4382.
Page-Clisson, M.E., Pinto-Alphandary, H., Ourevitch, M., Andremont, A., Couvreur, P., 1998. Development of ciprofloxacin-loaded nanoparticles: physicochemical study of the drug carrier. J. Control. Rel., 56, 23-32.
Pepper, D.C., 1980. Kinetics and mechanisms of zwitterionic polymerizations of alkyl cyanoacrylates. Polymer J., 12, 629-637.
Pitaksuteepong, T., Davies, N.M., Tucker, I.G., Rades, T., 2002. Factors influencing the entrapment of hydrophilic compounds in nanocapsules prepared by interfacial polymerisation of water-in-oil microemulsions. Eur. J. Pharm. Biopharm. 53, 335-342.
Puglisi, G., Giammona, G., Fresta, M., Carlisi, B., Micali, N., Villari, A., 1993. Evaluation of polyalkylcyanoacrylate nanoparticles as a potential-drug carrier – prepararion, morphological characterization and loading capacity. J. Microencapsulation 10, 353-366.
Ranney, D.F., 2000. Biomimetic transport and rational drug delivery. Biochem. Pharmacol. 59, 105-114.
Rivera, M.R., Rodríguez-Hernández, A.A., Hernández, N., Castillo, P., Saldívar, E., Ríos, L., 2005. Controlled/living free radical copolymerization of styrene and butyl acrylate in bulk and emulsion with industrial monomers. Influence of monomer addition on polymer properties. Ind. Eng. Chem. Res., 44, 2792-2801.
Ruan, G., Feng, S.S., 2003. Preparation and characterization of poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) microspheres for controlled release of paclitaxel. Biomaterials 24, 5037-5044.
Scherer, D., Robinson, J.R., Kreuter, J., 1994. Influence of enzymes on the stability of polybutylcyanoacrylate nanoparticles. Int. J. Pharm., 101, 165-168.
Schroder, U., Mosbach, K., 1985. Intravascularly administrable, magnetically responsive nanosphere or nanoparticle, a process for the production thereof, and the use thereof, US Patent 4 501 726, 26 Feb.
Schroeder, U., Sommerfeld, P., Sable, B.A., 1998. Efficacy of oral dalargin-loaded nanoparticle delivery across the blood-brain barrier. Peptides. 19, 777-780.
Sharma, A., Mayhew, E., Bolcsak, L., Cavanaugh, C., Harmon, P., Janoff, A., Bernacki, R.J., 1997. Activity of paclitaxel liposome formulations against human ovarian tumor xenografts. Int. J. Cancer 71, 103-107.
Sharma, D., Chelvi, T.P., Kaur, J., Chakravorty, K., De, T.K., 1996. Novel Taxol(R) formulation: Polyvinylpyrrolidone nanoparticle-encapsulated Taxol(R) for drug delivery in cancer therapy. Oncol. Res., 8, 281-286.
Shenoy, D.B., Amiji, M.M., 2005. Poly(ethylene oxide)-modified poly(□-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer., Int. J. Pharm., 293, 261-270.
da Silveira, A.M., Ponchel, G., Puisieux, F., Duchêne, D., 1998. Combined poly(isobutylcyanoacrylate) and cyclodextrins nanoparticles for enhancing the encapsulation of lipophilic drugs. Pharm. Res. 15, 1051-1055.
Singla, A.K., Garg, A., Aggarwal, D., 2002. Paclitaxel and its formulations. Int. J. Pharm. 235, 179-192.
Song, C.X., Labhasetwar, V., Murphy, H., Qu, X., Humphrey, W.R., Shebuski, R.J., Levy, R.J., 1997. Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery. J. Control. Release 43, 197-212.
Soppimath, K.S., Aminabhavi, T.M., Kulkarni, A.R., Rudzinski, W.E., 2001. Biodegradable polymeric nanoparticles as drug delivery devices., J. Control. Rel., 70, 1-20.
Stella, B., Arpicco, S., Peracchia, M.T., Desmaële, D., Hoebeke, J., Renoir, M., D’Angelo, J., Gattel, L., Couvreur, P., 2000. Design of folic acid-conjugated nanoparticles for drug targeting. J. Pharm. Sci. 89, 1452-1464.
Storm, G., Belliot, S.O., Daemen, T., Lasic, D.D., 1995. Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv. Drug Deliv. Rev. 17, 31-48.
Takasu, M., Shiroya, T., Takeshita, K., Sakamoto, M., Kawaguchi, H., 2003. Preparation of colored latex containing oil-soluble dyes with high dye content by mini-emulsion polymerization. Colloid Polym. Sci. 282, 119-126.
Tasset, C., Barette, N., Thysman, S., Ketelslegers, J.M., Lemoine, D., Préat, V., 1995. Polyisobutylcyanoacrylate nanoparticles as sustained release system for calcitonin. J. Control. Release 33, 23-30.
Vauthier, C., Dubernet, C., Chauvierre, C., Brigger, I., Couvreur, P., 2003a. Drug delivery to resisitant tumors: the potential of poly(alkyl cyanoacrylate) nanoparticles. J. Control. Release 93, 151-160.
Vauthier, C., Dubernet, C., Fattal, E., Pinto-Alphandary, H., Couvreur, P., 2003b. Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications. Adv. Drug Deliv. Rev. 55, 519-548.
Verdun, C., Brasseur, F., Vranckx, H., Couvreur, P., Roland, M., 1990. Tissue distribution of doxorubicin associated with polyisohexylcyanoacrylate nanoparticles. Cancer Chemother. Pharmacol. 26, 13-18.
Vezin, W.R., Florence, A.T., 1980. In vitro heterogeneous degradation of poly(n-alkyl α-cyanoacrylates). J. Biomed. Mater. Res., 14, 93-106.
Vila, A., Sanchez, A., Tobio, M., Calvo, P., Alonso, M.J., 2002. Design of biodegradable particles for protein delivery. J. Control. Release 78, 15-24.
Wang, H.T., Palmer, H., Lindhardt, R.J., Flanagan, D.R., Schmitt, E., 1990. Degradation of poly(ester) microspheres. Biomaterials 11, 679-685.
Waugh, W.N., Trissel, L.A., Stella, V.J., 1991. Stability, compatibility and plasticizer extraction of taxol (NSC-125973) injection diluted in infusion solution and stored in various containers. Am. J. Host. Pharm. 48, 1520-1524.
Westesen, K., Bunjes, H., Koch, M.H.J., 1997. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J. Control. Release 48, 223-236.
Wood, R.W., Li, V.H.K., Kreuter, J., Robinson, J.R., 1985. Ocular disposition of poly-hexy-2-cyano(3-14C)acrylate nanoparticles in the albino rabbit. Int. J. Pharm., 23, 175-183.
Wu, J., Akaike, T., Maeda, H., 1998. Modulation of enhanced vascular permeability in tumors by a bradykinin antagonist, a cyclooxygenase inhibitor, and a nitric oxide scavenger. Cancer Res. 58, 159-165.
Zange, R., Kissel, T., 1997. Comparative in vitro biocompatibility testing of polycyanoacrylates and poly(D,L-lactide-co-glycolide) using different mouse fibroblast (L929) biocompatibility test models. Eur. J. Pharm. Biopharm., 44, 149-157.
Yang, S.C., Ge, H.X., Hu, Y., Jiang, X.Q., Yang, C.Z., 2000. Formation of positively charged poly(butyl cyanoacrylate) nanoparticles stabilized with chitosan. Colloid Polym. Sci. 278, 285-292.
Yongmei, X., Yumin, D., 2003. Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. Int. J. Pharm. 250, 215-226.
Yoo, H.S., Lee, K.H., Oh, J.E., Park, T.G., 2000. In vitro and in vivo anti-tumor activities of nanoparticles based on doxorubicin-PLGA conjugates. J. Control. Release 68, 419-431.
Yuan, F., Dellian, M., Fukumura, D., Leuning, M., Brek, D.D., Yorchilin, V.P., Jain, R.K., 1995. Vascular-permeability in a human tumor xenograft - molecular-size dependence and cutoff size. Cancer Res. 55, 3752-3756.
Zhao, Y., Hu, T., Lv, Z., Wang, S., Wu, C., 1999. Laser light-scattering studies of poly(caprolactone-b-ethylene oxide-b-caprolactone) nanoparticles and their enzymatic biodegradation. J. Polym. Sci. Part B: Polym. Phys. 37, 3288-3293.
Zimmer, A., Kreuter, J., 1995. Microspheres and nanoparticles used in ocular delivery systems. Adv. Drug Deliv. Rev., 16, 61-73.