簡易檢索 / 詳目顯示

研究生: 黃建翔
Chien-Hsiang Hwang
論文名稱: NHEJ因子XRCC4、XLF與細胞週期檢查點蛋白SIRT2的蛋白作用力研究
Protein-protein interaction study of the NHEJ factors, XRCC4 and XLF and the cell-cycle checkpoint protein, SIRT2
指導教授: 賴建勳
Jiann-Shiun Lai
潘榮隆
Rong-Long Pan
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2007
畢業學年度: 96
語文別: 英文
論文頁數: 68
中文關鍵詞: NHEJXRCC4XLFSIRT2dimerizationLigase IV
外文關鍵詞: NHEJ, XRCC4, XLF, SIRT2, dimerization, Ligase IV
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • NHEJ是DNA 雙股斷裂修理的主要路徑之ㄧ。 在NHEJ中有7個主要的因子。 在已知的模式中, Ku70/Ku80 異型二聚體結合到DNA斷點,DNA-PKcs/Artemis 清除DNA 斷點上的多餘核酸。 然後XRCC4/Ligase IV 複合體結合至此斷點,而Ligase IV 將二個DNA 斷點接合。 XRCC4 形成二聚體或四聚物對Ligase IV 結合XRCC4 是必須的。最近發現了另一個因子,XLF 。 XLF 顯示了與XRCC4 結構相似。 XLF也能夠形成同型二聚體,也能夠結合至DNA ,這些功能都與XRCC4 類似,並且加強NHEJ 辨認不同型DNA 斷點的能力。 現在的NHEJ 模式傾向XRCC4 、XLF 和Ligase IV 形式複合體而不是原本的XRCC4/Ligase IV 複合體。 在這份論文,我經由質粒的轉染進293T 細胞與過度表現蛋白,並且經由免疫沉澱和西部墨點來測試蛋白之間是否有作用。結果顯示,XLF 和XRCC4 同型二聚體的形成與XLF/XRCC4 異型二聚體的形成不互相影響。 而XRCC4 二聚體形成和XLF 結合到XRCC4 的最小序列都在XRCC4 前134氨基酸的區域。 更進一步的片斷突變將失去XRCC4 二聚作用和XLF 結合。 這個結果顯示XRCC4 二聚作用和XLF 結合是同時存在的。
    SIRT2 是細胞分裂檢查站蛋白質,且能夠防止染色體不穩定。 SIRT2 能夠在有cyclin B/cdc2 的活性下阻止有絲分裂。 在G2/M 階段,XRCC4能夠跟SIRT2結合。 在這份論文顯示, XLF 也能夠跟SIRT2 結合。 且XRCC4 和SIRT2 的結合不影響XRCC4 對XLF 的結合。 此外, SIRT2 能夠增強XLF 對XRCC4 的結合能力。 所以, SIRT2/XLF/XRCC4 三者可能形成複合體並且提供NHEJ 到細胞週期之間的調節點。


    NHEJ is a major pathway of the repair of DNA double strand breaks. There are seven important factors involved in NHEJ. In the original model, Ku70/Ku80 heterodimer binds to DNA break ends and DNA-PKcs/Artemis cleans up the DNA overhanging ends. After XRCC4 is recruited and as a template for Ligase IV binding, Ligase IV joins the two DNA break ends. XRCC4 forms dimer or tetramer in the cell and the dimerization of XRCC4 is required for Ligase IV binding. XLF was identified recently. XLF has been shown structural similarity to XRCC4. As XRCC4, XLF also form homodimer and improves the DNA recognizing ability in the NHEJ. The hypothesis now favors the XRCC4, XLF and Ligase IV form a complex for DNA binding instead of the original proposed XRCC4/Ligase IV complex. In this thesis, I have overexpressed specific proteins by transfection of plasmids into 293T cells and tested the binding activity by co-immunoprecipitation and western blotting. The result shows that the formation of the homodimer of both XLF and XRCC4 does not compete with the formation of the XLF/XRCC4 heterodimer. The minimal sequence of XRCC4 critical for XRCC4 dimerization and XLF binding has been mapped at the region of first 134 amino acids of XRCC4. Further deletion loses both XRCC4 dimerization and XLF binding activity. This result suggests that the XRCC4 dimerization and XLF binding are concomitant.
    SIRT2 controls cellular proliferation and is a mitotic checkpoint protein that functions in the early metaphase to prevent chromosomal instability. SIRT2 blocks the entry of mitosis in the presence of the cyclin B/cdc2 activity. XRCC4 binds to SIRT2 primary at the G2/M phase (Lee et al, submitted). In this thesis, the result shows that XLF also binds to SIRT2. The binding between XRCC4 and SIRT2 does not disrupt the binding of XRCC4 to XLF. Furthermore, SIRT2 enhances the binding of XLF to XRCC4. Therefore, SIRT2 might bind to XLF and XRCC4 as a complex and provides a regulatory point between the cell cycle control and NHEJ repairing machinery.

    Abstract 2 Table of Contents 4 Abbreviations 6 Introduction 8 1. NHEJ (nonhomologous end-joining) and V(D)J recombination 8 2. XRCC4 and Ligase IV 10 3. XLF 11 4. NHEJ factors in Saccharomyces cerevisiae 12 5 .SIRT2 13 6. Aims 14 Materials and Methods 15 A General plasmid DNA preparation and construction 15 Mini preparation of DNA 15 Large DNA preparation 15 Preparation of Competent cell (Calcium chloride method) 16 Ligation 17 Bacterial transformation 17 Preservation of bacteria stock at -80℃ 17 Plasmid constructs 18 Primers used for plasmid constructions 19 B. Mammalian cell experimental methods and materials 24 The mammalian cells and the ATCC numbers 24 Mammalian cell passage 24 Cell freezing and thawing 24 Transfection (Calcium phosphate transfection method) 25 Transfection (lipofectamine-Plus Invitrogen) 25 Immunoprecipitation 26 SDS- polyacrylamide gel electrophoresis and Western blotting 26 Antibodies 27 Results 28 Summary of the mutants of XRCC4 28 XLF binds to XRCC4 and SIRT2 in the 293T cell 28 The binding between XLF and XRCC4 does not affect the homodimer formation on XRCC4 or XLF. 29 The study of the binding region of XRCC4 to XLF 30 The study of XRCC4 dimerization 32 Binding study of FLAG-XLF and several GST-XRCC4 point mutations 34 Discussion 37 Figures 41 Figure 1: Summary of XRCC4 mutant plasmids used in the thesis 41 Figure 2: XLF binds to XRCC4 and SIRT2 in 293T cell 43 Figure 3: No competitive effect between XRCC4 and XLF while they bind to XLF 44 Figure 4: The interaction between XRCC4 deletion mutants and XLF 46 Figure 5: The dimer formation region study of XRCC4. 50 Figure 6: XRCC4 point mutations do not affect the XLF binding in 293T cell. 53 Figure 7: The model of XRCC4 C130A binds to XLF. 57 Supplemental Figures 58 References 60

    1. Ahnesorg, P., and S. P. Jackson. 2007. The non-homologous end-joining protein Nej1p is a target of the DNA damage checkpoint. DNA Repair (Amst) 6:190-201.
    2. Ahnesorg, P., P. Smith, and S. P. Jackson. 2006. XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining. Cell 124:301-13.
    3. Bassing, C. H., W. Swat, and F. W. Alt. 2002. The mechanism and regulation of chromosomal V(D)J recombination. Cell 109 Suppl:S45-55.
    4. Buck, D., L. Malivert, R. de Chasseval, A. Barraud, M. C. Fondaneche, O. Sanal, A. Plebani, J. L. Stephan, M. Hufnagel, F. le Deist, A. Fischer, A. Durandy, J. P. de Villartay, and P. Revy. 2006. Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly. Cell 124:287-99.
    5. Budman, J., and G. Chu. 2006. Assays for nonhomologous end joining in extracts. Methods Enzymol 408:430-44.
    6. Callebaut, I., L. Malivert, A. Fischer, J. P. Mornon, P. Revy, and J. P. de Villartay. 2006. Cernunnos interacts with the XRCC4 x DNA-ligase IV complex and is homologous to the yeast nonhomologous end-joining factor Nej1. J Biol Chem 281:13857-60.
    7. Cavero, S., C. Chahwan, and P. Russell. 2007. Xlf1 is required for DNA repair by nonhomologous end joining in Schizosaccharomyces pombe. Genetics 175:963-7.
    8. Dai, Y., B. Kysela, L. A. Hanakahi, K. Manolis, E. Riballo, M. Stumm, T. O. Harville, S. C. West, M. A. Oettinger, and P. A. Jeggo. 2003. Nonhomologous end joining and V(D)J recombination require an additional factor. Proc Natl Acad Sci U S A 100:2462-7.
    9. de Jager, M., M. L. Dronkert, M. Modesti, C. E. Beerens, R. Kanaar, and D. C. van Gent. 2001. DNA-binding and strand-annealing activities of human Mre11: implications for its roles in DNA double-strand break repair pathways. Nucleic Acids Res 29:1317-25.
    10. de Jager, M., C. Wyman, D. C. van Gent, and R. Kanaar. 2002. DNA end-binding specificity of human Rad50/Mre11 is influenced by ATP. Nucleic Acids Res 30:4425-31.
    11. Deshpande, R. A., and T. E. Wilson. 2007. Modes of interaction among yeast Nej1, Lif1 and Dnl4 proteins and comparison to human XLF, XRCC4 and Lig4. DNA Repair (Amst). 1;6(10):1507-16.
    12. Di Virgilio, M., and J. Gautier. 2005. Repair of double-strand breaks by nonhomologous end joining in the absence of Mre11. J Cell Biol 171:765-71.
    13. Dore, A. S., N. Furnham, O. R. Davies, B. L. Sibanda, D. Y. Chirgadze, S. P. Jackson, L. Pellegrini, and T. L. Blundell. 2006. Structure of an Xrcc4-DNA ligase IV yeast ortholog complex reveals a novel BRCT interaction mode. DNA Repair (Amst) 5:362-8.
    14. Drouet, J., P. Frit, C. Delteil, J. P. de Villartay, B. Salles, and P. Calsou. 2006. Interplay between Ku, Artemis, and the DNA-dependent protein kinase catalytic subunit at DNA ends. J Biol Chem 281:27784-93.
    15. Dryden, S. C., F. A. Nahhas, J. E. Nowak, A. S. Goustin, and M. A. Tainsky. 2003. Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol Cell Biol 23:3173-85.
    16. Dudasova, Z., A. Dudas, and M. Chovanec. 2004. Non-homologous end-joining factors of Saccharomyces cerevisiae. FEMS Microbiol Rev 28:581-601.
    17. Dudley, D. D., J. Chaudhuri, C. H. Bassing, and F. W. Alt. 2005. Mechanism and control of V(D)J recombination versus class switch recombination: similarities and differences. Adv Immunol 86:43-112.
    18. Ferreira, M. G., and J. P. Cooper. 2004. Two modes of DNA double-strand break repair are reciprocally regulated through the fission yeast cell cycle. Genes Dev 18:2249-54.
    19. Frank-Vaillant, M., and S. Marcand. 2001. NHEJ regulation by mating type is exercised through a novel protein, Lif2p, essential to the ligase IV pathway. Genes Dev 15:3005-12.
    20. Fugmann, S. D. 2001. RAG1 and RAG2 in V(D)J recombination and transposition. Immunol Res 23:23-39.
    21. Grawunder, U., M. Wilm, X. Wu, P. Kulesza, T. E. Wilson, M. Mann, and M. R. Lieber. 1997. Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells. Nature 388:492-5.
    22. Gu, J., H. Lu, A. G. Tsai, K. Schwarz, and M. R. Lieber. 2007. Single-stranded DNA ligation and XLF-stimulated incompatible DNA end ligation by the XRCC4-DNA ligase IV complex: influence of terminal DNA sequence. Nucleic Acids Res. 2007;35(17):5755-62
    23. Haigis, M. C., and L. P. Guarente. 2006. Mammalian sirtuins--emerging roles in physiology, aging, and calorie restriction. Genes Dev 20:2913-21.
    24. Hentges, P., P. Ahnesorg, R. S. Pitcher, C. K. Bruce, B. Kysela, A. J. Green, J. Bianchi, T. E. Wilson, S. P. Jackson, and A. J. Doherty. 2006. Evolutionary and functional conservation of the DNA non-homologous end-joining protein, XLF/Cernunnos. J Biol Chem 281:37517-26.
    25. Hiratsuka, M., T. Inoue, T. Toda, N. Kimura, Y. Shirayoshi, H. Kamitani, T. Watanabe, E. Ohama, C. G. Tahimic, A. Kurimasa, and M. Oshimura. 2003. Proteomics-based identification of differentially expressed genes in human gliomas: down-regulation of SIRT2 gene. Biochem Biophys Res Commun 309:558-66.
    26. Huang, J., and W. S. Dynan. 2002. Reconstitution of the mammalian DNA double-strand break end-joining reaction reveals a requirement for an Mre11/Rad50/NBS1-containing fraction. Nucleic Acids Res 30:667-74.
    27. Inoue, T., M. Hiratsuka, M. Osaki, and M. Oshimura. 2007. The molecular biology of mammalian SIRT proteins: SIRT2 in cell cycle regulation. Cell Cycle 6:1011-8.
    28. Inoue, T., M. Hiratsuka, M. Osaki, H. Yamada, I. Kishimoto, S. Yamaguchi, S. Nakano, M. Katoh, H. Ito, and M. Oshimura. 2007. SIRT2, a tubulin deacetylase, acts to block the entry to chromosome condensation in response to mitotic stress. Oncogene 26:945-57.
    29. Ira, G., A. Pellicioli, A. Balijja, X. Wang, S. Fiorani, W. Carotenuto, G. Liberi, D. Bressan, L. Wan, N. M. Hollingsworth, J. E. Haber, and M. Foiani. 2004. DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature 431:1011-7.
    30. Junop, M. S., M. Modesti, A. Guarne, R. Ghirlando, M. Gellert, and W. Yang. 2000. Crystal structure of the Xrcc4 DNA repair protein and implications for end joining. Embo J 19:5962-70.
    31. Kegel, A., J. O. Sjostrand, and S. U. Astrom. 2001. Nej1p, a cell type-specific regulator of nonhomologous end joining in yeast. Curr Biol 11:1611-7.
    32. Latonen, L., and M. Laiho. 2005. Cellular UV damage responses--functions of tumor suppressor p53. Biochim Biophys Acta 1755:71-89.
    33. Leber, R., T. W. Wise, R. Mizuta, and K. Meek. 1998. The XRCC4 gene product is a target for and interacts with the DNA-dependent protein kinase. J Biol Chem 273:1794-801.
    34. Lin, F. L., K. Sperle, and N. Sternberg. 1990. Repair of double-stranded DNA breaks by homologous DNA fragments during transfer of DNA into mouse L cells. Mol Cell Biol 10:113-9.
    35. Liti, G., and E. J. Louis. 2003. NEJ1 prevents NHEJ-dependent telomere fusions in yeast without telomerase. Mol Cell 11:1373-8.
    36. Lu, H., U. Pannicke, K. Schwarz, and M. R. Lieber. 2007. Length-dependent binding of human XLF to DNA and stimulation of XRCC4.DNA ligase IV activity. J Biol Chem 282:11155-62.
    37. Ma, Y., and M. R. Lieber. 2006. In vitro nonhomologous DNA end joining system. Methods Enzymol 408:502-10.
    38. Ma, Y., U. Pannicke, K. Schwarz, and M. R. Lieber. 2002. Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 108:781-94.
    39. Manolis, K. G., E. R. Nimmo, E. Hartsuiker, A. M. Carr, P. A. Jeggo, and R. C. Allshire. 2001. Novel functional requirements for non-homologous DNA end joining in Schizosaccharomyces pombe. Embo J 20:210-21.
    40. Martin, S. G., T. Laroche, N. Suka, M. Grunstein, and S. M. Gasser. 1999. Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. Cell 97:621-33.
    41. Maryon, E., and D. Carroll. 1991. Characterization of recombination intermediates from DNA injected into Xenopus laevis oocytes: evidence for a nonconservative mechanism of homologous recombination. Mol Cell Biol 11:3278-87.
    42. Matsumoto, Y., N. Suzuki, N. Namba, N. Umeda, X. J. Ma, A. Morita, M. Tomita, A. Enomoto, S. Serizawa, K. Hirano, K. Sakaia, H. Yasuda, and Y. Hosoi. 2000. Cleavage and phosphorylation of XRCC4 protein induced by X-irradiation. FEBS Lett 478:67-71.
    43. Mizuta, R., H. L. Cheng, Y. Gao, and F. W. Alt. 1997. Molecular genetic characterization of XRCC4 function. Int Immunol 9:1607-13.
    44. Modesti, M., J. E. Hesse, and M. Gellert. 1999. DNA binding of Xrcc4 protein is associated with V(D)J recombination but not with stimulation of DNA ligase IV activity. Embo J 18:2008-18.
    45. Modesti, M., M. S. Junop, R. Ghirlando, M. van de Rakt, M. Gellert, W. Yang, and R. Kanaar. 2003. Tetramerization and DNA ligase IV interaction of the DNA double-strand break repair protein XRCC4 are mutually exclusive. J Mol Biol 334:215-28.
    46. Moore, J. K., and J. E. Haber. 1996. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol Cell Biol 16:2164-73.
    47. Nick McElhinny, S. A., C. M. Snowden, J. McCarville, and D. A. Ramsden. 2000. Ku recruits the XRCC4-ligase IV complex to DNA ends. Mol Cell Biol 20:2996-3003.
    48. Olaru, A., H. T. Petrie, and F. Livak. 2005. Beyond the 12/23 rule of VDJ recombination independent of the Rag proteins. J Immunol 174:6220-6.
    49. Ooi, S. L., D. D. Shoemaker, and J. D. Boeke. 2001. A DNA microarray-based genetic screen for nonhomologous end-joining mutants in Saccharomyces cerevisiae. Science 294:2552-6.
    50. Palmbos, P. L., J. M. Daley, and T. E. Wilson. 2005. Mutations of the Yku80 C terminus and Xrs2 FHA domain specifically block yeast nonhomologous end joining. Mol Cell Biol 25:10782-90.
    51. Pastwa, E., and J. Blasiak. 2003. Non-homologous DNA end joining. Acta Biochim Pol 50:891-908.
    52. Pavlicek, A., and J. Jurka. 2006. Positive selection on the nonhomologous end-joining factor Cernunnos-XLF in the human lineage. Biol Direct 1:15.
    53. Pitcher, R. S., T. E. Wilson, and A. J. Doherty. 2005. New insights into NHEJ repair processes in prokaryotes. Cell Cycle 4:675-8.
    54. Prudden, J., J. S. Evans, S. P. Hussey, B. Deans, P. O'Neill, J. Thacker, and T. Humphrey. 2003. Pathway utilization in response to a site-specific DNA double-strand break in fission yeast. Embo J 22:1419-30.
    55. Revy, P., L. Malivert, and J. P. de Villartay. 2006. Cernunnos-XLF, a recently identified non-homologous end-joining factor required for the development of the immune system. Curr Opin Allergy Clin Immunol 6:416-20.
    56. Rich, T., R. L. Allen, and A. H. Wyllie. 2000. Defying death after DNA damage. Nature 407:777-83.
    57. Rodriguez, M., X. Yu, J. Chen, and Z. Songyang. 2003. Phosphopeptide binding specificities of BRCA1 COOH-terminal (BRCT) domains. J Biol Chem 278:52914-8.
    58. Sibanda, B. L., S. E. Critchlow, J. Begun, X. Y. Pei, S. P. Jackson, T. L. Blundell, and L. Pellegrini. 2001. Crystal structure of an Xrcc4-DNA ligase IV complex. Nat Struct Biol 8:1015-9.
    59. Sulek, M., R. Yarrington, G. McGibbon, J. D. Boeke, and M. Junop. 2007. A critical role for the C-terminus of Nej1 protein in Lif1p association, DNA binding and non-homologous end-joining. DNA Repair (Amst). 1;6(12):1805-18
    60. Thompson, L. H., and D. Schild. 2001. Homologous recombinational repair of DNA ensures mammalian chromosome stability. Mutat Res 477:131-53.
    61. Timson, D. J., M. R. Singleton, and D. B. Wigley. 2000. DNA ligases in the repair and replication of DNA. Mutat Res 460:301-18.
    62. Tsai, C. J., S. A. Kim, and G. Chu. 2007. Cernunnos/XLF promotes the ligation of mismatched and noncohesive DNA ends. Proc Natl Acad Sci U S A 104:7851-6.
    63. Valencia, M., M. Bentele, M. B. Vaze, G. Herrmann, E. Kraus, S. E. Lee, P. Schar, and J. E. Haber. 2001. NEJ1 controls non-homologous end joining in Saccharomyces cerevisiae. Nature 414:666-9.
    64. Vaquero, A., M. B. Scher, D. H. Lee, A. Sutton, H. L. Cheng, F. W. Alt, L. Serrano, R. Sternglanz, and D. Reinberg. 2006. SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev 20:1256-61.
    65. Wang, M., W. Wu, W. Wu, B. Rosidi, L. Zhang, H. Wang, and G. Iliakis. 2006. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucleic Acids Res 34:6170-82.
    66. Weterings, E., N. S. Verkaik, H. T. Bruggenwirth, J. H. Hoeijmakers, and D. C. van Gent. 2003. The role of DNA dependent protein kinase in synapsis of DNA ends. Nucleic Acids Res 31:7238-46.
    67. Wilson, S., N. Warr, D. L. Taylor, and F. Z. Watts. 1999. The role of Schizosaccharomyces pombe Rad32, the Mre11 homologue, and other DNA damage response proteins in non-homologous end joining and telomere length maintenance. Nucleic Acids Res 27:2655-61.
    68. Wilson, T. E. 2002. A genomics-based screen for yeast mutants with an altered recombination/end-joining repair ratio. Genetics 162:677-88.
    69. Windhofer, F., W. Wu, and G. Iliakis. 2007. Low levels of DNA ligases III and IV sufficient for effective NHEJ. J Cell Physiol. 213(2):475-83
    70. Wintjens, R., and M. Rooman. 1996. Structural classification of HTH DNA-binding domains and protein-DNA interaction modes. J Mol Biol 262:294-313.
    71. Wu, P. Y., P. Frit, L. Malivert, P. Revy, D. Biard, B. Salles, and P. Calsou. 2007. Interplay between cernunnos-XLF and NHEJ proteins at DNA ends in the cell. J Biol Chem. 2;282(44):31937-43
    72. Yu, Y., W. Wang, Q. Ding, R. Ye, D. Chen, D. Merkle, D. Schriemer, K. Meek, and S. P. Lees-Miller. 2003. DNA-PK phosphorylation sites in XRCC4 are not required for survival after radiation or for V(D)J recombination. DNA Repair (Amst) 2:1239-52.
    73. Zha, S., F. W. Alt, H. L. Cheng, J. W. Brush, and G. Li. 2007. Defective DNA repair and increased genomic instability in Cernunnos-XLF-deficient murine ES cells. Proc Natl Acad Sci U S A 104:4518-23.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE