研究生: |
羅培哲 Pei Jhe Lo |
---|---|
論文名稱: |
有機金屬濺鍍製程運用於銅銦鎵硒太陽電池製備之研究 The study of metal-organic-sputtering process for fabrication of Cu(In,Ga)Se2 solar cell |
指導教授: |
徐永珍
Yung Jane Hsu 黃惠良 Huey Liang Hwang |
口試委員: |
翁恆義
蕭錫練 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 75 |
中文關鍵詞: | 銅銦鎵硒太陽電池 、硒化製程 、濺鍍製程 |
外文關鍵詞: | CIGS solar cell, selenization, sputtering |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要藉由製程機台的設計與改裝,實踐有機金屬濺鍍製程,利用RF-Sputter沉積Cu-In-Ga( 44.70 : 38.12 : 17.14 at%)合金前驅薄膜,本研究利用EDS與拉曼光譜證實了外接攜出三甲基鎵氣體流量與薄膜中鎵元素的調整的正相關,接著利用固態硒粉加熱後進行硒化,過程中可以藉由改變升溫速率、溫度、持溫時間與硒粉量優化CIGS層,再利用化學浴沉積一層具透光性與覆蓋性的CdS,進而得到最佳化的主動層;此外,在我們的研究中,我們對三元前驅層硒化與四元薄膜退火進行比較,其中以三元前驅層硒化後的結構與特性上較為良好;最後在太陽電池的製作,我們以SLG/Mo/CIGS/CdS/i-ZnO/AZO/Al的結構去堆疊,其中硒化製程以500℃鋒值溫度、40分鐘持溫時間與50mg的硒粉得到最佳化太陽電池,其開路電壓(Voc)為0.16 V、短路電流(Jsc)為22.90 mA/cm2、填充因子(F.F)為0.29,效率為1.018 %。
In this study , we design the new process for fabrication of Cu(In,Ga)Se2 solar cell to prove the assumption of the metal-organic-sputtering process . Firstly , we use RF sputter to deposit the CuInGa thin film which can control the components of Ga as the function of TMGa flow with measurement of EDS and the Raman spectrum and then and carry out the selenization process with selenium powder by furnace . And then , we can optimize the selenization process by the parameters , such as rate of heating , top temperature , duration time and amount of selenium powder. Furthermore , we obtain the CdS buffer layer with good coverage and high transmittance by a chemical bath deposition way . In this study , we also compare the difference between CuInGa and Cu(In,Ga)Se2 thin film by different annealing process . And we find that , the selenized CuInGa thin film is better than the other on micro-structure . Finally , we fabricate the Cu(In,Ga)Se2 solar cell with SLG / Mo / CIGS /CdS / i-ZnO / AZO / Al structure . In selenization process , we optimize the parameters and show the efficiency of 1.018 % with an open circuit voltage of 0.16 V , short circuit current of 22.90 mA/cm2 and fill factor of 0.29 as the best cell in our study .
[1] D.J. Hoffman, A Parametric Assessment of the Mission Applicability of Thin-Film Solar Arrays, IEEE, Vol. 1, pp. 670-680, 2000.
[2] L. M. Woods, A. Kalla, D. Gonzalez, and R. Ribelin, Wide-bandgap CIASthin-film photovoltaics with transparent back contacts for next generation single and multi-junction devices, Material Science and Engineering: B, Vol. 116, pp. 297-302, 2005.
[3] S. M. Sze, Semiconductor Devices: Physics and Technology, 2nd editionJohn-Wiley & Sons, Ch4, p.89 (2001).
[4] H. J. Möller, Semiconductors for solar cells. Artech House, Ch2,p. 21-23 (1993).
[5] http://conceptselectronics.com/wp-content/uploads/2014/04/PN-junction
[6] Air Mass -PVEducation/ http://pveducation.org/pvcdrom
[7] P. D. Paulson, M. W. Haimbodi, S. Marsillac, R. W. Birkmire and W. N. Shafaman CuIn1-xAlxSe2thin films and solar cells, Journal of Applied Physics 91 (2002) 10153-10156.
[8]太陽電池 Solar Cells,黃惠良,蕭錫鍊,周明奇,林堅楊,江雨龍,曾百亨,李威儀, 李世昌,林唯芳,五南出版社,2014.
[9]黃將才,”以兩段硒化製程製備銅銦鋁硒太陽能電池之研究”,國立清華大學電子工程研究論文,2015.
[10] European Roadmap for PV R&D. European Commission Joint Research Center, 2004 EUR 21087EN.
[11] KRI Report No. 8: Solar Cells, February 2005.
[12]http://fresnostate.digication.com/csu_fresno_and_pelco_solar_power_station
[13] http://physics.stackexchange.com/questions/why-does-band-gap-form-for-silicon
[14] U.Rau, M. Schmidt,A. Jasenek,G. Hanna,H.W. Schock , Solar Energy Materials & Solar Cells,67,137-143(2001)
[15]https://en.wikipedia.org/wiki/Copper_indium_gallium_selenide
[16] Ju-Heon Yoon, Tae-Yeon Seong and Jeung-hyun Jeong , Effect of a Mo back contact on Na diffusion in CIGS thin film solar cells
[17] Zhao-Hui Li, Eou-Sik Cho, Sang Jik Kwon Molybdenum thin film deposited by in-line DC magnetron sputtering as a back contact for Cu(In,Ga)Se2 solar cells
[18] Sheng-Hui Chen,Wei-Ting Lin, Shih-Hao Chan, Photoluminescence Analysis of CdS/CIGS Interfacesin CIGS Solar Cells
[19] Ming-Ru Yang, Ding-Wen Chiou, Hsien-Te Cheng , Effects of substrate temperature on the properties of transparent conducting AZO thin films and CIGS solar cells
[20]https://en.wikipedia.org/wiki/Sputter_deposition#/media/File:Sputtering.gif
[21] Y.H. Huang, Study of microstructures and electro-optic properties on sputtering AZO with metal electrode thin films, Master Thesis, I-Shou University, 2012.
[22] F. M. Smits, Measurement of sheet resistivities with the four-point probe, Bell System Technical Journal,Vol.37, p711-p718,1958
[23]許淇銘,”研究CIAS太陽電池的硒化製程”,國立清華大學電子工程研究論 文,2015.
[24] http://chemwiki.ucdavis.edu/diffraction/Powder_X-ray_Diffraction
[25]http://www.ammrf.org.au/myscope/sem/practice/principles/layout.php
[26] A collection of resources for the photovoltaic educator. http://pveducation.org/
[27] Zhao-Hui Li, Eou-Sik Cho, Sang Jik Kwon Molybdenum thin film deposited by in-line DC magnetron sputtering as a back contact for Cu(In,Ga)Se2 solar cells.
[28] John H. Scofield A. Duda, and D. Albin. Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells.
[29] 邱稜翔,“優化硒化製程在製備銅銦鋁硒太陽電池之研究”,國立清華大學 電子工程研究所論文,2013.
[30] In situ investigation of the formation of Cu(In,Ga)Se2 from selenised metallic precursors by X-ray diffraction—The impact of Gallium, Sodium and Selenium excess.
[31] 黃哲瑄“以濺鍍/無毒硒化製程製作銅銦鎵硒薄膜太陽能電池”,國立交通大學光電研究所論文.
[32] 洪嘉黛“CuInGa合金濺鍍以及硒化製備之CIGS薄膜”,國立清華大學材料工程研究所論文.
[33] K Manickathai, S Kasi Viswanathan, MAlagar,Synthesis and characterization of CdO and CdS nanoparticles.