簡易檢索 / 詳目顯示

研究生: 劉建興
Lin-Chien Hsin
論文名稱: 模糊映射的共同定點定理
Common fixed point theorems of fuzzy maps
指導教授: 張東輝
Tong-Huei Chang
陳啟銘
Chi-Ming chen
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 7
中文關鍵詞: 弱Meir-Keeler收縮型函數定點糢糊集合模糊映射
外文關鍵詞: The weaker Meir-keeler type contraction, Fixed point, Fuzzy set, Fuzzy mapping
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們在度量線性空間上,證明一對滿足收縮型的弱Meir-Keeler的模糊映射有固定點。


    We prove the common fixed point theorems for a pair of fuzzy mappings satisfying the weaker Meir-keeler type contraction in a metric linear space.

    1. Introduction ------1 2. Main results ------2 3. References --------7

    [1] Ya. l. Alber, S. Guerr-Delabriere, Principle of weakly contractive maps in Hilbert space, Oper. Theory Adv. Appl. 98(1997), 7-22.
    [2] A. Azam, I. Beg, Common fixed points of fuzzy maps, Math. Comp. model. 49(2009), 1331-1336.
    [3] R. K. Bose, D. Sahani, Fuzzy mappings and fixed point theorems, Fuzzy Sets and Systems 21(1987), 53-58.
    [4] S. Heilpern, Fuzzy mappings and fixed point theorems, J. Math. Anal. Appl. 83(1981), 566-569.
    [5] B. S. Lee, S. J. Cho, A fixed point theorem for contractivetype fuzzy mappings, Fuzzy Sets and Systems 61(1994), 309-312.
    [6] B. S. Lee, G. M Lee, S. J. Cho, D. S. Kim, A common fixed point theorem for a pair of fuzzy mappings, Fuzzy Sets and Systems 98(1998), 133-136.
    [7] S. B. Nadler, Multivalued contraction mappings, Pacific J. Math. 30(1969), 475-488.
    [8] A. Meir, E, Keeler, A theorem on contraction mappings, J. Math. Anal. Appl. 28(1969), 326-329.
    [9] R. A. Rashwan, M. A. Ahmad, Common fixed point theorems for fuzzy mappings, Arch. Math (Brno)38(2002), 219-226.
    [10] B. E Rhoades, Keeler, A common fixed point theorem for sequence of fuzzy mapping, Int. J. Math. Math. Sci. 8(1995), 447-450.
    [11] I. A. Rus, Fixed point theorems for multivalued mappings in complete metric spacs, Cluj University Press, Cluj-Napoca. (2001).
    [12] C. L. Yen, On common fixed points (II), Tamkang J. Math. 4(1973).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE