研究生: |
盧聖介 Sheng-Chieh Lu |
---|---|
論文名稱: |
包覆空氣微脂體於高頻超音波影像與聲學非線性性質研究與應用 Echogenic Liposomes in High-Frequency Ultrasound Imaging and Nonlinear Properties Investigations |
指導教授: |
葉秩光
Chih-Kuang Yeh |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 87 |
中文關鍵詞: | 微脂體 、超音波 |
外文關鍵詞: | Liposomes, Ultrasound |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自Bangham博士發現微脂體以來,微脂體被發展成藥物輸送載子與超音波對比劑。由於微脂體的粒徑可以控制在1 μm以下,因此能應用在高頻超音波上。高頻超音波不但能提升影像的解析度與偵測靈敏度,並且還能降低機械參數減少組織傷害。本研究利用自組的高頻超音波系統以偵測這些小粒子並成像。然後將測試微脂體的非線性性質,包含共振頻率、高階諧振散射與破裂。
我們提出一系列實驗模型做測試。這些實驗包含利用25 MHz高頻超音波系統成像,本研究測試影響微脂體高頻影像品質的因素,包含回溶緩衝液溫度、回溶稀釋比例與震盪混合時間。結果顯示用4-7℃緩衝液以1比3的比例稀釋微脂體,震盪混合在30秒以內的條件下有持續10分鐘以上的生命週期。再來,我們以general Herring equation預測微脂體共振頻率範圍,預測結果顯示微脂體共振頻率在約8 MHz到14 MHz之間並以實驗量測微脂體衰減係數得在8 MHz到10 MHz之間的能量吸收有相對高值。我們選用的頻率為10 MHz用來測試微脂體的高階諧波訊號並將其與馬達系統結合應用成二階諧波成像,結果發現微脂體在10 MHz聲波刺激下以二倍頻(20 MHz)成像的CTR值約為12至15 dBs,並且會有超諧波訊號的產生。最後是利用超頻超音波影像系統觀察微脂體在1.5 MHz聲波發射下的破裂行為,發現微脂體在0.15 MPa聲壓下的高頻影像已出現下降趨勢,並在0.50 MPa聲壓下會在很短的時間(10秒內)降至背景值。
以上的研究都是在生物體外下進行,在這些研究之後,我們應用這些結果至兩個生物模型上。一是利用10 MHz頻率刺激帶DNA微脂體進行3T3-L1的基因傳遞實驗,另一個為以1.5 MHz HIFU刺激(10 W)微脂體在老鼠腦內進行血腦障壁開啟的實驗。並發現微脂體在10 MHz聲波刺激下能提昇基因傳遞率由約5 %至約16 %,並且可以維持高細胞存活率。而血腦障壁的確可以HIFU結合微脂體產生穴蝕效應而開啟。
[1] P. N. Burns, J. E. Powers, D. H. Simpson, “Harmonic power mode Doppler using microbubble contrast agents: An improved method for small vessel flow imaging,” Proc. IEEE. Ultrason Symp., vol. 3, pp. 1547-1550, 1994. [2] F. S. Foster, “Advances in Ultrasound Biomicroscopy,” Ultrasound in Med. & Biol., vol. 26, no. 1, pp. 1–27, 2000. [3] Charles J. Pavlin, F. S. Foster, “High-Frequency Doppler Ultrasound Examination of Blood Flow in the Anterior Segment of the Eye,” American Journal of Ophthalmology, vol. 126, no. 4, 1998. [4] V. Cucevic, A. S. Brown and F. S. Foster, “Thermal Assessment of 40-MHz Pulsed Doppler Ultrasound in Human Eye,” Ultrasound in Med. & Biol., vol. 31, no. 4, pp. 565–573, 2005. [5] Klaus Hoffmann, “20 MHz sonography, colorimetry and image analysis in the evaluation of psoriasis vulgaris,” Journal of Dermatological Science, vol. 9, pp. 103-110, 1995. [6] Ximena C. Wortsman, “Real-time Spatial Compound Ultrasound Imaging of Skin,” Skin Research and Technology, vol. 10, pp.23-31, 2004. [7] S. E. Nissen, ” Application of a New Phased-Array Ultrasound Imaging Catheter in the Assessment of Vascular Dimensions In Vivo Comparison to Cineangiography,” Circulation, vol. 81, pp. 660-666, 1990. [8] Akihiro Murashige, “Detection of Lipid-Laden Atherosclerotic Plaque by Wavelet Analysis of Radiofrequency Intravascular Ultrasound Signals In Vitro Validation and Preliminary In Vivo Application,” Journal of the American College of Cardiology, vol. 45, no. 12, 2005. [9] Jian-Feng Chen and James A. Zagzebski, “Frequency Dependence of
81
Backscatter Coefficient Versus Scatterer Volume Fraction,” IEEE Transactions on biomedical engineering, vol. 43, no. 3, 1996. [10] Peter J. A. Frinking, Nico De Jong, “Ultrasound Contrast Imaging: Current and New Potential Methods,” Ultrasound in Med. & Biol., vol. 26, no. 6, pp. 965-975, 2000. [11] J.D. Kasprzak, “Comparison of Native and Contrast-Enhanced Harmonic Echocardiography for Visualization of Left Ventricular Endocardial Border,” Am J Cardiol, vol. 83, pp. 211-217, 1999. [12] S. H. Bloch, Paul A. Dayton, and Katherine W. Ferrara, “Targeted Imaging Using Ultrasound Contrast Agents,” IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, 2004. [13] BROOKS PC, CLARK RAF, CHERESH DA, “Requirement of ascular integrin alpha(v)beta(3) for angiogenesis,” Science, vol. 264, no. 5158, pp. 569-571, 1994. [14] Raffi Bekeredjian, “Use of ultrasound contrast agents for gene or drug delivery in cardiovascular medicine,” Journal of the American College of Cardiology, vol. 45, no. 3, pp. 329-335, 2005 [15] Lars Hoff, “Acoustic properties of ultrasonic contrast agents,” Ultrasonics, vol. 34, pp. 591-593, 1996. [16] A. L. Baert and K. Sartor et al., “Contrast Media in Ultrasonography,” Springer Berlin Heidelberg, New York, 2005. [17] James E. Chomas, Paul Dayton, John Allen, Karcn Morgan and Katherinc W. Ferrara, “Mechanisms of Contrast Agent Destruction,” IEEE TRANSACTIONS ON UFFC, vol. 48, no. 1, 2001. [18] P. N. Burns, “Optimising phase and amplitude modulation schemes for imaging microbubble contrast agents at low acoustic power,” Ultrasound in Med. & Biol.,
82
vol. 31, no. 2, pp. 213-219, 2005. [19] S. Krishnan and M. O’Donnell, “Transmit Aperture Processing for Nonlinear Contrast Agent Imaging,” Ultrasonic imaging, vol. 18, pp. 77-105, 1996. [20] P. M. Shankar, P. Dala Krishna and V. L. Newhouse, “Advantages of Subharmonic Over Second Harmonic Backscatter for Contrast-to-Tissue Echo Enhancement,” Ultrasound in Med. & Biol., vol. 24, no. 3, pp. 395-399, 1998. [21] Meng-Xing Tang and Robert J. Eckersley, “Nonlinear Propagation of Ultrasound Through Microbubble Contrast Agents and Implications for Imaging,” IEEE Transactions on UFFC, vol. 53, no. 12, 2002. [22] Morton W. Miller, Douglas L. Miller and Andrew A. Brayman, “A review of in vitro bioeffects of inertial ultrasonic cavitation from a mechanistic perspective,” Ultrasound in Med. & Biol., vol. 22, no. 9, pp. 1131-1154, 1996. [23] Chun-Yen Lai, Chia-Hsuan Wu, Chia-Chun Chen and Pai-Chi Li, “Quantitative Relations of Acoustic Inertial Cavitation with Sonoporation and Cell Viability,” Ultrasound in Med. & Biol., vol. 32, no. 12, pp. 1931-1941, 2006. [24] James E. Chomas, Paul Dayton, Donovan May and Kathy Ferrara, “Threshold of fragmentation for ultrasonic contrast agents,” Journal of Biomedical Optics, vol. 6, no. 2, pp. 141-150, 2001. [25] Peter Weiss, “Shrimps spew bubbles as hot as the sun,” Science News, Vol. 160, No. 14, pp. 213, 2001. [26] J. E. Chomas, R. A. Sikes, K. W. Ferrara, “Correlation Analysis of Received Echoes from Contrast Agents in-vitro and in-vivo,” Proc. IEEE. Ultrason Symp., vol. 3, pp. 1803-1806, 1998. [27] Kevin Wei, Ananda R. Jayaweera, Soroosh Firoozan, Andre Linka, Danny M. Skyba and Sanjiv Kaul, “Quantification of Myocardial Blood Flow With Ultrasound-Induced Destruction of Microbubbles Administered as a Constant
83
Venous Infusion,” Circulation, vol. 97, pp. 473-483, 1998. [28] Danny M. Skyba, Richard J. Price, Andre Z. Linka, Thomas C. Skalak and Sanjiv Kaul, “Direct In Vivo Visualization of Intravascular Destruction of Microbubbles by Ultrasound and its Local Effects on Tissue,” Circulation, vol. 98, pp. 290-293, 1998. [29] Chun-Yen Lai, “A Study on Acoustic Cavitation Assisted Gene Delivery,” Thesis, National Taiwan University, 2005. [30] D.A.B. Smith, T.M. Porter, “Destruction thresholds of echogenic liposomes with clinical diagnostic ultrasound,” Ultrasound in Med. & Biol., Vol. 33, No. 5, pp. 797–809, 2007. [31] H.A. Onyuksel, S.M. Demos, “Development of Inherently Echogenic Liposomes as an Ultrasonic Contrast Agent,” Journal of Pharmaceutical Sciences, Vol. 85, No. 5, May 1996. [32] Bangham A. D., Standish M. N. and Watkins J. C., “Diffusion of univalent ions across the lamellae of swollen phospholipids,” J. Mol. Biol., Vol.13, pp. 238-252, 1965. [33] S.L. Huang, R.C. MacDonald, “Acoustically active liposomes for drug encapsulation and ultrasound-triggered release,” Biochimica et Biophysica Acta vol. 1665, pp. 134– 141, 2004. [34] Kazuo Maruyama, Tomoko Takizawa, “Targetability of novel immunoliposomes modified with amphipathic poly( ethylene glycol) s conjugated at their distal terminals to monoclonal antibodies,” Biochimica et Biophysica Acta, vol. 1234, pp. 74-80, 1995. [35] Alan N. Gordon, “Recurrent Epithelial Ovarian Carcinoma: A Randomized Phase III Study of Pegylated Liposomal Doxorubicin Versus Topotecan,” Journal of Clinical Oncology, vol 19, no. 14, pp. 3312-3322, 2001.
84
[36] V. P. Torchilin, “Drug targeting,” European Journal of Pharmaceutical Sciences , vol. 11, no. 2, pp. 81-91, 2000. [37] Huang S. L., “Ultrasound-facilitated thrombolysis using tissue-plasminogen activator-loaded echogenic liposomes,” Thrombosis Research, vol. 119, pp. 777-784, 2007. [38] O. Couture, F. S. Foster, “Investigating Perfluorohexane Particles with High-frequency Ultrasound,” Ultrasound in Med. & Biol., vol. 32, no. 1, pp. 73-82, 2006. [39] Huang S. L. and Macdonald R. C., “Physical correlates of the ultrasonic reflectivity of lipid dispersions suitable as diagnostic contrast agents,” Ultrasound in Med. & Biol., vol. 28, no. 3, pp. 339-348, 2002 [40] S.L. Huang, A.J. Hamilton, “Improving Ultrasound Reflectivity and Stability of Echogenic Liposomal Dispersions for Use as Targeted Ultrasound Contrast Agents,” JOURNAL OF PHARMACEUTICAL SCIENCES, vol. 90, no. 12, 2001. [41] C.C. Coussios, C.K. Holland, “In vitro characterization of liposomes and optison by acoustic scattering at 3.5 mhz,” Ultrasound in Med. & Biol., Vol. 30, No. 2, pp. 181–190, 2004. [42] Sasha M. Demos, “In Vitro Targeting of Antibody-Conjugated Echogenic Liposomes for Site-Specific Ultrasonic Image Enhancement,” Journal of Pharmaceutical Sciences, vol. 86, no. 2, 1997. [43] RG.M. Bloemena., P.A.J. Henricksa, “Adhesion molecules: a new target for immunoliposome-mediated drug delivery,” FEBS Letters vol. 357, pp. 140-144, 1995. [44] Alexander T. Florence, “Nanoparticle uptake by the oral route: Fulfilling its potential?” Drug Discovery Today: Technologies, vol. 2, no. 1, 2005.
85
[45] S. Koch, “Ultrasound Enhancement of Liposome-mediated Cell Transfection is Caused by Cavitation Effects,” Ultrasound in Med. & Biol., vol. 26, no. 5, pp. 897-903, 2000. [46] W. J. Greenleaf, “Artificial Cavitation Nuclei Significantly Enhance Acoustically Induced Cell Transfection,” Ultrasound in Med. & Biol., vol. 24, no. 4, pp. 587–595, 1998. [47] J. A. Wyber, “The Use of Sonication for the Efficient Delivery of Plasmid DNA into Cells,” Pharmaceutical Research, vol. 14, no. 6, 1997. [48] Douglas L. Mi11er, “In Vivo Transfection of Melanoma Cells by Lithotripter Shock Waves,” Cancer Research, vol. 58, pp. 219-221, 1998. [49] Nielsen LL., Maneval DC.,”P53 tumor suppressor gene therapy for cancer,” Cancer Gene Therapy, Vol. 5, No. 1, pp. 52-63, 1998. [50] Russell J. Mumper and Alain P. Rolland, “Plasmid delivery to muscle: Recent advances in polymer delivery systems,” Advanced Drug Delivery Reviews, vol. 30, pp. 151-172, 1998. [51] Sangjun Chun, “Immune Modulation by IL-10 Gene Transfer via Viral Vector and Plasmid DNA: Implication for Gene Therapy,” Cellular Immunology, vol. 194, pp. 194-204, 1999. [52] Evan C. Unger, “Gene Delivery Using Ultrasound Contrast Agents,” Chocardiographye , vol. 18, no. 4, 2001. [53] Wen-Shiang Chen, “The effect of Surface Agitation on Ultrasound-mediated Gene Transfer in vitro,” J. Acoust. Soc. Am. vol. 116, no. 4, 2004. [54] D. L. Miller, “DNA Transfer and Cell Killing in Epidermoid Cells by Diagnostic Ultrasound Activation of Contrast Agent Gas Bodies in vitro,” Ultrasound in Med. & Biol., vol. 29, no. 4, pp. 601–607, 2003. [55] Joan Abbott N. and Ignacio A. Romero, “Transporting therapeutics across the
86
blood-brain barrier,” Molecular Medicine Today, 1996. [56] Qureshi N. H., Chiocca E. A., “A review of Gene therapy for the treatment of central nervous system tumors,” Crit. Rev. Oncog. vol. 10, pp. 261-274, 1999. [57] Kroll R.A., Neuwelt E. A., “Outwitting the blood-brain barrier for the therapeutic purposes: osmotic opening and other means,” Neurosurgery, vol. 42, pp. 1083-1099, 1998. [58] Nancy D. Doolittle, “Safety and Efficacy of a Multicenter Study Using Intraarterial Chemotherapy in Conjunction with Osmotic Opening of the Blood-Brain Barrier for the Treatment of Patients with Malignant Brain Tumors,” CANCER, vol. 88, no. 3, 2000. [59] Ali H. Mesiwala, “High-intensity focused ultrasound selectively disrupts the blood-brain barrier in vivo,” Ultrasound in Med. & Biol., vol. 28, no. 3, pp. 389–400, 2002. [60] Kullervo Hynynen, “Noninvasive MR Imaging–guided Focal Opening of the Blood-Brain Barrier in Rabbits,” Radiology, vol. 220, no. 3, 2001. [61] Nickolai Sheikov, “Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles,” Ultrasound in Med. & Biol., vol. 30, no. 7, pp. 979–989, 2004. [62] Manabu Kinoshita, “Targeted delivery of antibodies through the blood–brain barrier by MRI-guided focused ultrasound,” Biochemical and Biophysical Research Communications, vol. 340, pp. 1085-1090, 2006. [63] N. McDannold, N. Vykhodtseva and K. Hynynen, “Targeted disruption of the blood–brain barrier with focused ultrasound: association with cavitation activity,” Phys. Med. Biol., vol. 51, pp. 793-807, 2006. [64] F. R. Hallett, “Vesicle sizing Number distributions by dynamic light scattering,” Biophys. J. c Biophysical Society, vol. 59, pp. 357-362, 1991.
87
[65] Andrea Prosperetti, “The equation of bubble dynamics in a compressible liquid,” Phys. Fluid, Vol. 30, no. 11, pp. 3626-3628, 1987. [66] Calum A. MacDonald and Vassilis Sboros, “A numerical investigation of the resonance of gas-filled microbubbles: resonance dependence on acoustic pressure amplitude,” Ultrasonics, vol. 43, pp. 113-122, 2004. [67] Calum A. MacDonald and Vassilis Sboros, “A numerical investigation of the resonance of gas-filled microbubbles: resonance dependence on acoustic pressure amplitude,” Ultrasonics, vol. 43, pp. 113-122, 2004. [68] K.E. Morgan, Katherine W. Ferrara, “Experimental and Theoretical Evaluation of Microbubble Behavior: Effect of Transmitted Phase and Bubble Size,” IEEE Transactions on UFFC, vol. 47, no. 6, 2000. [69] Lawrence A. Crum, “The Polytropic exponent of gas contained within air bubbles pulsating in a liquid,” J. Acoust. Soc. Am. vol. 73, no. 1, 1983. [70] Meng-Xing Tang, “Frequency and Pressure Dependent Attenuation and Scattering by Microbubbles,” Ultrasound in Med. & Biol., vol. 33, no. 1, pp. 164–168, 2007. [71] P. N. Burns, “Nonlinear Imaging,” Ultrasound in Med. & Biol., vol. 26, no. 1, pp. S19-S22, 2000.