簡易檢索 / 詳目顯示

研究生: 陳建宏
Chen, Chien-Hong
論文名稱: 鎳/鐵氫化酵素和鐵醯腈水解酵素活化中心之小分子模型化合物研究
Small Molecule Models of [NiFe] Hydrogenase and Fe-Containing Nitrile Hydratase Active-Sites
指導教授: 廖文峯
Liaw, Wen-Feng
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 152
中文關鍵詞: 氫化酵素水解酵素金屬酵素配位化學一氧化氮
外文關鍵詞: hydrogenase, nitrile hydratase, metalloenzyme, coordination chemistry, nitric oxide
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生化擬態之鎳(II)/(III)-硫化合物

    一系列鎳(II)-硫醇化合物,[NiII(X)(P(o-C6H4S)2(o-C6H4SH))]- (X = Se-p-C6H4-Cl (1), 2-S-C4H3S (2), Cl (9))和[NiII(PPh3)(P(o-C6H4S)2(o-C6H4SH))] (5a)/(5b)已經成功的合成出來。這些平面四方形結構的化合物具有一個硫醇官能基,硫醇官能基上的質子同時和分子內的硫原子與鎳原子產生交互作用,並且穩定此類分子的存在。藉由紅外線光譜學、核磁共振光譜及單晶X光繞射結構解析的研究,確實證明此特殊分子內作用力的存在。由氘同位素水分子與硫醇官能基上氫質子的交換實驗,配合紅外線光譜學、核磁共振光譜,亦證明硫醇官能基上氫質子的存在。分析此類化合物的紅外線光譜,我們發現此種特殊的分子內作用力其強弱與鎳原子上的電子密度相關。當鎳原子上的電子密度愈高時,此特殊的分子內作用力愈強,並且導致硫醇官能基上的質子更酸性化。此酸性化的結果使得此類硫醇化合物容易被氧化成鎳(III)-硫化合物。將化合物1,2,5a和5b與氧氣反應分別得到鎳(III)-硫化合物 3 、4及6 ([NiIII(X)(P(o-C6H4S)3)]- (X = Se-p-C6H4-Cl (3), 2-S-C4H3S (4); [NiIII(PPh3)(P(o-C6H4S)3)] (6))。這些鎳(III)-硫化合物皆為雙三角錐的結構,並且經由電子順磁光譜證實皆具有一個電子在dz2軌域上。在環電位儀上,鎳(III)-硫化合物 3、4在-1.17 V;鎳(III)-硫化合物 6在-0.865 V,顯示出由鎳(III)接受電子還原成鎳(II)的現象。藉由另一個鎳(II)-硫醚化合物10 ([NiII(PPh3)(P(o-C6H4S)2(o-C6H4-SCH3))])的單晶X光結構繞射解析,也更加證實鎳(II)-硫醇化合物上質子確實是受到同分子內的硫原子與鎳原子同時吸引,才會座落在鎳原子與硫醇官能基的硫原子之間。

    生化擬態之鐵(II)/(III)-硫-硝基化合物

    一系列的五配位鐵-硫-硝基化合物([PPN][Fe(NO)(S,S-C6H2-3,6-Cl2)2] (13)、 [PPN]2[Fe2(NO)2(S,SO2-C6H2-3,6-Cl2)2(S,S-C6H2-3,6-Cl2)2] (14)、 [PPN]2[(NO)Fe(S,S-C6H2-3,6-Cl2)2] (15)、 [PPN]2[Fe(NO)(S,SO2-C6H2-3,6-Cl2)(S,S-C6H2-3,6-Cl2)] (16))已經合成成功,並且經過紅外線光譜、紫外線-可見光光譜、核磁共振光譜及單晶X光繞射解析鑑定。將化合物13與氧氣反應可以得到化合物14,此反應顯示有{Fe(NO)}6組成的化合物13具有引發硫配位基上硫原子氧化的能力。將化合物13以[EtS]-還原可以得到化合物15,此分子的Fe-N-O角度為153.4度,呈現彎曲的形式。以[EtS]-將化合物14還原可以得到化合物16,其分子的Fe-N-O角度為166.0度,彎曲度略小於化合物15。此外,在紫外線照射下,化合物14會轉變成化合物13,化合物16則會轉變成化合物15。由化合物13-14-16-15之間的轉變也許可以提供一些訊息,以解釋腈水解酵素在活化態與非活化態之間轉換的機制。


    For the biomimetic nickel(II) thiolate-thiol and nickel (III)-thiolate complexes
    A series of mononuclear, distorted square planar complexes [NiII(X)(P(o-C6H4S)2(o-C6H4SH))]- (X = Se-p-C6H4-Cl (1), 2-S-C4H3S (2), Cl (9)) and [NiII(PPh3)(P(o-C6H4S)2(o-C6H4SH))] (5a)/(5b) with a S-H proton directly interacting with nickel atom or with both nickel and sulfur atoms were synthesized. The presence of intramolecular [Ni•••H-SR] interaction or combinations of intramolecular [Ni-S•••H-SR]/[Ni•••H-SR] interactions were verified in the solid state by the IR □SH stretching bands, the exo-thiol protons resonances of 1H NMR spectra and subsequently confirmed by single crystal X-ray diffraction studies. The exo-thiol proton in complexes 1, 2, and 5a was identified as a D2O exchangeable proton from NMR and IR studies. Based on the observations of IR νS-H stretching frequencies, the extent of interactions (exo-thiol interaction modes ([Ni-S…H-S], [Ni…H-S] or combinations)) was modulated by the electronic density surrounding nickel resulting from the distinct terminally-coordinated donor ligands [Se-p-C6H4-Cl]-, [SePh]-, [S-C4H3S]-, [Cl]-, and PPh3 in these NiII-exo-thiol complexes 1, 2, 5a, 5b, 8, and 9. Instead of the ligand-based oxidation to form dinuclear Ni(II) complexes and dichalcogenide, oxidation of THF-CH3CN solution of complexes 1 and 2 by O2 resulted in the formation of the mononuclear, distorted trigonal bipyramidal [NiIII(X)(P(o-C6H4S)3)]- (X = Se-p-C6H4-Cl (3), 2-S-C4H3S (4)) accompanied by byproduct H2O identified by 1H NMR. Also, the reaction of dry O2 with THF solution of complex 5a/5b afforded the mononuclear, distorted trigonal bipyramidal [NiIII(PPh3)(P(o-C6H4S)3)] (6). Reduction of complex 6 or deprotonation of complex 5a/5b yielded [NiII(PPh3)(P(o-C6H4S)3)]- (7), which also displayed the distorted trigonal bipyramidal geometry. The EPR spectra of complexes 3 and 4 exhibiting high rhombicities with three principal g values of 2.30, 2.09 and 2.0 are consistent with Ni(III) with the odd electron in the dz2 orbital. Complexes 3, 4, and 6 undergoes a reversible NiIII/II process at E1/2 = -1.17 V in CH3CN (complexes 3 and 4) and -0.865 V (complex 6) in CH2Cl2 (vs Cp2Fe/Cp2Fe+), respectively. In addition, the single crystal X-ray diffraction studies of complex [NiII(PPh3)(P(o-C6H4S)2(o-C6H4-SCH3))] (10a/10b) give the evidence that the exo-thiol protons of the Ni(II) exo-thiol complexes 1, 2, 5a, 5b and 9 were attracted by nickel atom and sulfur atom of thiolate, resulting in the intramolecular interactions (combinations of [Ni-S…H-S]/[Ni…HS] or [Ni…HS]). Reaction of complex 10 with [SPh]- and [SePh]- led to the formation of [NiII(EPh)(P(o-C6H4S)2(o-C6H4-SCH3))]- (E = S (11); Se (12)). Combinations of 1H NMR spectra and single-crystal X-ray diffraction studies of mononuclear NiII exo-thioehter complexes 10a, 10b, 11, and 12 revealed that the intramolecular interaction between NiII and thioether sulfur atom became weaker when the temperature is increased or the more electron-donating terminal ligand is ligated to NiII center.

    For the iron-thiolate nitrosyl complexes
    The five-coordinated iron-thiolate nitrosyl complexes [PPN][Fe(NO)(S,S-C6H2-3,6-Cl2)2] (13), [PPN]2[Fe2(NO)2(S,SO2-C6H2-3,6-Cl2)2(S,S-C6H2-3,6-Cl2)2] (14), [PPN]2[(NO)Fe(S,S-C6H2-3,6-Cl2)2] (15), and [PPN]2[Fe(NO)(S,SO2-C6H2-3,6-Cl2)(S,S-C6H2-3,6-Cl2)] (16) have been isolated and characterized by IR, UV/vis, NMR spectra and X-ray crystallography. Upon contact with dry O2, iron-thiolate nitrosyl complex 13 containing {Fe(NO)}6 core trigger sulfur oxygenation to yield the S-bonded monosulfinate iron complex 14. Reduction of complex 13 by [EtS]- yields complex 15 with a bent Fe-N-O bond angle of 153.4□. Compared to the reaction of O2 with complex 13, there is to a certain extent an attack of O2 on the •NO radical of complex 15 containing {Fe(NO)}7 core leading to the formation of complex 13 accompanied by the minor products, [Fe(S,S-C6H4)2]22– and [NO3]–. Treatment of 1 equiv of [EtS]– and complex 14 in CH3CN-THF yields complex 16 along with (EtS)2 identified by 1H NMR. Compared to complex 15, complex 16 with the less electron-donating sulfinate ligand coordinated to {FeNO}7 core were oxidized by O2 to yield complex 14. Obviously, the electronic perturbation of the {Fe(NO)}7 core caused by the coordinated sulfinate in complex 16 may serve to regulate the reactivity of complex 16 toward O2. The iron-sulfinate nitrosyl species with {Fe(NO)}6/7 core exhibit the photolabilization of sulfur-bound [O] moiety under irradiation. The interconversion of complexes 13-14-16-15 may provide some clues to the transformation pathways between the active and inactive NO-bound forms of Fe-containing nitrile hydratase.

    TABLE OF CONTENTS 中文摘要…………………………………………...……………………………….I ABSTRACT………………………………………………………………...……..III 謝誌……………………………………………………………………………….VI List of Figures…………………………………………………….………………. X List of Tables……………………………………………………..……..………XIV List of APPENDIX………………………………………….…….………..……XVI CHAPTER 1: INTRODUCTION…….…………………………………………….1 Part 1. Hydrogenase………………….…………………………………………..1 1-1. The active-site structures of [NiFe] H2ases…..……………………..........2 1-2. The redox states of the active center of [NiFe] H2ases…….……………..5 1-3. The proposed intermediates in the hydrogen catalytic cycle…….……….6 1-4 Biomimic models of [NiFe] H2ases……………………………….………8 Part 2. Nitrile Hydratase………………………………………………...………17 2-1. Properties and structures of NHases………………………………….....17 2-2. The peculiarity of NHases……………………………………….…..…..20 2-3 Proposed mechanisms……………………………………………..……..22 2-4. Biomimic models of Fe-NHases………………………………..……….24 CHAPTER 2: EXPERIMENTAL SECTION……………….……………………..30 General Procedures……..………………………………….……………………30 Part 1. ……………..……………………………………………………………31 Preparation of [PPN][Ni(Se-p-C6H4-Cl)(P(o-C6H4S)2(o-C6H4SH))] (1) …....31 Preparation of [PPN][Ni(2-S-C4H3S)(P(o-C6H4S)2(o-C6H4SH))] (2) ……….31 D/H exchange for reaction of complexes 1/2 and D2O………………………32 Reaction of Et3N and complexes 1/2…………………………………………32 Preparation of [PPN][Ni(Se-p-C6H4-Cl)(P(o-C6H4S)3)] (3) …………………33 Preparation of [PPN][Ni(2-S-C4H3S)(P(o-C6H4S)3)] (4) ………………...….33 Preparation of [NiII(PPh3)(P(o-C6H4S)2(o-C6H4SH))] (5) ………………...…34 Preparation of [NiIII(PPh3)(P(o-C6H4S)3)] (6) ……………………………….34 Preparation of [NiIICl(P(o-C6H4S)2(o-C6H4SH))] (9) …………………….....35 Reaction of [NiII(PPh3)(P(o-C6H4S)2(o-C6H4SH))] (5) with [PPN][SePh]/ [PPN] [Se-p-C6H4-Cl] ……………………………………………………….35 Preparation of [PPN][NiII(PPh3)(P(o-C6H4S)3)] (7) ...…………………….…35 Protonation of [PPN][NiII(PPh3)(P(o-C6H4S)3)] (7) by HClO4…………...….36 Reaction of [PPN][NiII(PPh3)(P(o-C6H4S)3)] (7) with [Cp2Fe][PF6] …...…...36 Preparation of [NiII(PPh3)(P(o-C6H4S)2(o-C6H4-SCH3))] (10) …………...…37 Preparation of [PPN][NiII(SPh)(P(o-C6H4S)2(o-C6H4-SCH3))] (11) /[PPN][NiII(SePh)(P(o-C6H4S)2(o-C6H4-SCH3))] (12) …..……………….…37 EPR Measurements …………………………………………………..….…38 Magnetic Measurements……………………………………………….…...38 Crystallography…..……………………………………………………….….39 Part 2. …..……………………………………………………………….….…..47 Preparation of [PPN][Fe(NO)(S,S-C6H2-3,6-Cl2)2] (13) ………..………..…47 Preparation of [PPN]2[Fe2(NO)2(S,SO2-C6H2-3,6-Cl2)2(S,S- C6H2-3,6-Cl2)2] (14) …...……..……………………………………………...47 Preparation of [PPN]2[Fe(NO)(S,S-C6H2-3,6-Cl2)2] (15) …………………48 Preparation of [PPN]2[Fe(NO)(S,SO2-C6H2-3,6-Cl2) (S,S-C6H2-3,6-Cl2)] (16)………...…………………………………………48 Photolysis of CH2Cl2 solution of [PPN]2[Fe2(NO)2(S,SO2-C6H2- 3,6-Cl2)2(S,S-C6H2-3,6-Cl2)2] (14) and PPh3………………………………49 Photolysis of CH3CN solution of [PPN]2[Fe(NO)(S,SO2-C6H2- 3,6-Cl2)(S,S-C6H2-3,6-Cl2)] (16) ……………………………….………..….49 Reaction of [PPN]2[Fe(NO)(S,S-C6H2-3,6-Cl2)2] (15) with O2……..…….…49 Reaction of [PPN]2[Fe(NO)(S,SO2-C6H2-3,6-Cl2)(S,S- C6H2-3,6-Cl2)] (16) with O2………………………………………….………50 Magnetic Measurements………..…………………….………………………50 Crystallography …..……….…………………………………………………50 CHAPTER 3: RESULTS AND DISCUSSION ….…..……………………………55 Part 1-1. (Hydrogenase) ………………….………………………………….…55 Preparations and characterizations of [PPN][Ni(Se-p-C6H4-Cl)(P(o-C6H4S)2 (o-C6H4SH))] (1)/ [PPN][Ni(2-S-C4H3S)(P(o-C6H4S)2(o-C6H4SH))] (2) ...…55 H/D exchange reactions of complexes 1 and 2………………………………56 Molecular structures of complexes 1 and 2…………………..………………61 Specific intramolecular [Ni-S•••H-SR]/[Ni•••H-SR] interactions………..63 Preparations and characterizations of [PPN][NiⅢ(ER)(P(o-C6H4S)3)] (ER = Se-p-C6H4-Cl (3), 2-S-C4H3S (4))……………………..……………...66 Molecular structures of complexes 3 and 4………………..…………………73 Part 1-2. (Hydrogenase) …………………………………………………..……77 Preparation and characterization of [NiII(PPh3)(P-(o-C6H4S)2 (o-C6H4SH))] (5)……………………………………………………………..77 H/D exchange reaction of complex 5……………….………………………..81 Molecular structure of complex 5……………………………………………82 Preparation and characterization of [NiⅢ(PPh3)(P(o-C6H4S)3)] (6) ….……...85 Preparation, characterization and reactivity of [PPN][NiII(PPh3)(P(o-C6H4S)3)] (7) …………………………………………88 Molecular structures of complexes 6 and 7……………………….….………89 Preparation and characterization of [PPN][NiII(ER)(P-(o-C6H4S)2 (o-C6H4SH))] (ER=SePh(8), Se-p-C6H4-Cl(1))/ [PPN][NiIICl(P-(o-C6H4S)2(o-C6H4SH))] (9)……..……………………….....93 Molecular structure of complex 9 ...……….……………………….………..94 Comparisons of Ni(II) exo-thiol complexes 1, 2, 5a, 5b, 8 ,and 9…..……….96 Preparation and characterization of [NiII(PPh3)(P(o-C6H4S)2 (o-C6H4-SCH3))] (10) ………………………………..………………………97 Molecular structure of complex 10………………………….………….……99 Preparation and characterization of [PPN][NiII(EPh)(P(o-C6H4S)2 (o-C6H4S-CH3))] (E = S (11); Se (12)) ……………………………….….…104 Molecular structures of complex 11 and 12…………………………...……106 Part 2. (Nitrile Hydratase) ………………..…………...……………….……...109 Preparation and characterization of [PPN][Fe(NO)(S,S-C6H2-3,6-Cl2)2] (13)/[PPN]2[(ON)Fe(S,SO2- C6H4-3,6-Cl2)(S,S-C6H2-3,6-Cl2)]2 (14) ……………………………...….…109 Conversion of complex 14 to complex 13…………………..………………113 Molecular structure of complex 13……………………………..…………...115 Preparations and characterizations of [PPN]2[Fe(NO)(S,S- C6H2-3,6-Cl2)2] (15)/[PPN]2[(ON)Fe(S,SO2-C6H2-3,6-Cl2) (S,S-C6H2-3,6-Cl2)] (16) ……………………………………………..……..116 Conversion of complex 16 to complex 15…………..……………………120 Reactions of dioxygen with complexes 13, 15, 16 and other iron-thiolate complexes………………….……………………………121 Molecular structures of complexes 15 and 16…………..……..……………122 CHAPTER 4: Conclusion and Comments………………….……………………127 Hydrogenase Part. ……………………………………………….……………127 Nitrile Hydratase Part…………………………………………..……………...131 References………………………………………..………………………………136 List of Figures Figure 1-1. The active-site structure of [NiFe] H2ase (oxidized form)………………3 Figure 1-2. The active-site structure of [NiFeSe] H2ase (reduced form)………….…3 Figure 1-3. The proposed active-site structure of the air-oxidized RH………………3 Figure 1-4. The proposed active-site structure of the air-oxidized SH………………3 Figure 1-5. The redox states of the active center of [NiFe] H2ases…………...………5 Figure 1-6. The electronic absorption spectrum and EPR spectrum of the active Fe-NHase…………………………………………….………19 Figure 1-7. The active site structure of the NO-inactivaed Fe-NHase……….………19 Figure 1-8. The conversion between the active form and NO-inactivated form Fe-NHase……………………………….…………………………22 Figure 1-9. The designed Schiff-base ligands for the syntheses of NHase model complexes…………………………..……………………25 Figure 1-10. (a) The structure of [FeIII(PyPepS)2]- anion. (b) The structure of [FeIII (PyAS)2]+ anion………………..…………...26 Figure 1-11. (a) The structure of [FeIIIS2Me2N3(Pr,Pr)]+ anion. (b) The structure of [FeIII(PyPS)]- anion...…………………………….27 Figure 1-12. The reversibile binding of the acetonitrile to the complex [FeIIIS2Me2N3(Et,Pr)]+ cation…..……………………...……………..…27 Figure 1-13. (a) The structure of [FeIII(PyPepSO2)2]- anion. (b) The structure of [Fe(N2Cl2{SO2}2)(CN)2]3- anion…………………28 Figure 1-14. (a) The structure of [FeIIIS2Me2N3(Pr,Pr)(NO)]+ anion. (b) The structure of [(bmmp-TASN)Fe(NO)]+ anion. (c) The structure of [Fe(N2S2)(NO)]- anion………………………...….29 Figure 3-1. (a) IR spectrum (KBr) of [PPN][Ni(Se-p-C6H4-Cl)(P-(o-C6H4S)2 (o-C6H4SH))] (1). (b) IR spectrum (KBr) of [PPN][Ni(2-S-C4H3S) (P(o-C6H4S)2(o-C6H4SH))] (2)………………………………….……..58 Figure 3-2. (a) IR spectrum (KBr) of [PPN][Ni(Se-p-C6H4-Cl)(P-(o-C6H4S)2 (o-C6H4SD))] (1-D). (b) IR spectrum (KBr) of [PPN][Ni(2-S-C4H3S) (P(o-C6H4S)2(o-C6H4SD))] (2-D)…………………………..………….58 Figure 3-3. 1H NMR spectrum (400 MHz) of [PPN][Ni(Se-p-C6H4-Cl)(P-(o- C6H4S)2(o-C6H4SH))] (1) in THF-D8 solution at 297 K………………..59 Figure 3-4. 1H NMR spectrum (400 MHz) of [PPN][Ni(2-S-C4H3S)(P(o-C6H4S)2 (o-C6H4SH))] (2) in THF-D8 solution at 297 K…………………...……59 Figure 3-5. ORTEP drawing and labeling scheme of [NiII(Se-p-C6H4-Cl)(P(o- C6H4S)2(o-C6H4SH))]- anion (1) with thermal ellipsoids drawn at 50 % probability level…………………………………………………………62 Figure 3-6. ORTEP drawing and labeling scheme of [NiII(2-S-C4H3S)(P(o-C6H4S)2 (o-C6H4SH))]- anion (2) with thermal ellipsoids drawn at 50 % probability level………………………………………..…………………63 Figure 3-7. 1H NMR spectrum (500 MHz) of [PPN][NiⅢ(Se-p-C6H4-Cl)(P(o- C6H4S)3)] (3) in CD3CN solution at 297 K………………………………67 Figure 3-8. 1H NMR spectrum (500 MHz) of [PPN][NiⅢ(2-S-C4H3S)(P(o- C6H4S)3)] (4) in CD2Cl2 solution at 297 K……………………………….68 Figure 3-9. Plot of □eff vs T for [PPN][NiⅢ(Se-p-C6H4-Cl)(P(o-C6H4S)3)] (3)……...68 Figure 3-10. Plot of □eff vs T for [PPN][NiⅢ(2-S-C4H3S)(P(o-C6H4S)3)] (4)………..69 Figure 3-11. EPR spectra of complexes 3 (a) and 4 (b) frozen in CH2Cl2…………...70 Figure 3-12. Cyclic voltammogram of [PPN][NiⅢ(Se-p-C6H4-Cl)(P(o- C6H4S)3)] (3)……………………………………………………………71 Figure 3-13. Cyclic voltammogram of [PPN][NiⅢ(2-S-C4H3S)(P(o-C6H4S)3)] (4)…71 Figure 3-14. ORTEP drawing and labeling scheme of [NiIII(Se-p-C6H4-Cl)(P(o- C6H4S)3)]- anion (3) with thermal ellipsoids drawn at 50 % probability level... …………………………………….……………….75 Figure 3-15. ORTEP drawing and labeling scheme of [NiII(2-S-C4H3S)(P(o- C6H4S)3)]- anion (4) with thermal ellipsoids drawn at 50 % probability level…………………………………………………..……75 Figure 3-16. 1H NMR spectrum (500 MHz) of [NiII(PPh3)(P-(o-C6H4S)2(o- C6H4SH))] (5) in CDCl3 solution at 297 K. ………………..……....…78 Figure 3-17. 31P NMR spectrum (500 MHz) of [NiII(PPh3)(P-(o-C6H4S)2(o- C6H4SH))] (5) in CDCl3 solution at 297 K. ………………………..…78 Figure 3-18. (a) IR spectrum (KBr) of [NiII(PPh3)(P-(o-C6H4S)2(o-C6H4SH))] (5a). (b) IR spectrum (KBr) of [NiII(PPh3)(P-(o-C6H4S)2(o-C6H4SD))] (5-D) …………………………………………………………………………..80 Figure 3-19. IR spectrum (KBr) of [NiII(PPh3)(P-(o-C6H4S)2(o-C6H4SH))] (5b)……80 Figure 3-20. 2H NMR spectrum (500 MHz) of [NiII(PPh3)(P-(o-C6H4S)2(o- C6H4SD))] (5-D) in THF solution at 297 K…………………….………81 Figure 3-21. ORTEP drawing and labeling scheme of [NiII(PPh3)(P(o-C6H4S)2(o- C6H4SH))] (5a) with thermal ellipsoids drawn at 50 % probability level…………………………..……………………………84 Figure 3-22. ORTEP drawing and labeling scheme of [NiII(PPh3)(P(o-C6H4S)2(o- C6H4SH))] (5b) with thermal ellipsoids drawn at 50 % probability level……………………………………………..…………85 Figure 3-23. UV/vis spectrum of [PPN][NiⅢ(PPh3)(P(o-C6H4S)3)] (6) in CH2Cl2 solution………………………………………………………86 Figure 3-24. 1H NMR spectrum (500 MHz) of [NiⅢ(PPh3)(P(o-C6H4S)3)] (6) in CDCl3 solution at 297 K……………………………………………87 Figure 3-25. Cyclic voltammogram of [NiⅢ(PPh3)(P(o-C6H4S)3)] (6)…….……..….87 Figure 3-26. 1H NMR spectrum (500 MHz) of [PPN][NiII(PPh3)(P-(o- C6H4S)3)] (7) in CD3CN solution at 297 K……………………………..89 Figure 3-27. ORTEP drawing and labeling scheme of [NiIII(PPh3)(P(o-C6H4S)3)] (6) with thermal ellipsoids drawn at 50 % probability level……….……...91 Figure 3-28. ORTEP drawing and labeling scheme of [NiII(PPh3)(P(o-C6H4S)3)]- anion (7) with thermal ellipsoids drawn at 50 % probability level……92 Figure 3-29. 1H NMR spectrum (500 MHz) of [PPN][NiIICl(P-(o-C6H4S)2(o- C6H4SH))] (9) in CDCl3 solution at 297 K……………………………93 Figure 3-30. IR spectrum (KBr) of [PPN][NiIICl(P-(o-C6H4S)2(o-C6H4SH))] (9).….94 Figure 3-31. ORTEP drawing and labeling scheme of [NiIICl(P(o-C6H4S)2(o- C6H4SH))]- anion (9) with thermal ellipsoids drawn at 50 % probability level……………………………………….…….…………95 Figure 3-32. 1H NMR spectrum (500 MHz) of [NiII(PPh3)(P(o-C6H4S)2(o-C6H4- SCH3))] (10) in CDCl3 solution at 297 K……………….……………..98 Figure 3-33. 31P NMR spectrum (500 MHz) of [NiII(PPh3)(P(o-C6H4S)2(o-C6H4- SCH3))] (10) in CDCl3 solution at 297 K……………...………………99 Figure 3-34. ORTEP drawing and labeling scheme of [NiII(PPh3)(P(o-C6H4S)2(o- C6H4S-CH3))](10a) with thermal ellipsoids drawn at 50 % probability level……………………………………………....………102 Figure 3-35. ORTEP drawing and labeling scheme of [NiII(PPh3)(P(o-C6H4S)2(o- C6H4-SCH3))](10b) with thermal ellipsoids drawn at 50 % probability level………………………….…………………….…..…102 Figure 3-36. 1H NMR spectra of [NiII(PPh3)(P(o-C6H4S)2(o-C6H4-SCH3))] (10) with variable temperature in C4D8O solution……………………...…103 Figure 3-37. 1H NMR spectrum (500 MHz) of [PPN][NiII(SPh)(P(o-C6H4S)2(o- C6H4-SCH3))] (11) in CDCl3 solution at 297 K…………………...…105 Figure 3-38. 1H NMR spectrum (500 MHz) of [PPN][NiII(SPh)(P(o-C6H4S)2(o- C6H4-SCH3))] (12) in CDCl3 solution at 297 K………………...……105 Figure 3-39. ORTEP drawing and labeling scheme of [NiII(SPh)(P(o-C6H4S)2(o- C6H4-SCH3))]- (11) with thermal ellipsoids drawn at 50 % probability level………………………………………………………107 Figure 3-40. ORTEP drawing and labeling scheme of [NiII(SePh)(P(o-C6H4S)2(o- C6H4-SCH3))]-(12) with thermal ellipsoids drawn at 50 % probability level………………………………………………………108 Figure 3-41. 1H NMR spectrum (500 MHz) of [PPN][Fe(NO)(S,S-C6H2- 3,6-Cl2)2] (13) in CD3CN solution at 297 K……………………….…110 Figure 3-42. IR spectrum (KBr) of [PPN][Fe(NO)(S,S-C6H2-3,6-Cl2)2] (13) ……..111 Figure 3-43. 1H NMR spectrum (500 MHz) of [PPN]2[(ON)Fe(S,SO2-C6H- 3,6-Cl2)(S,S-C6H2-3,6-Cl2)]2 (14) in CD3CN solution at 297 K…..…112 Figure 3-44. IR spectrum (KBr) of [PPN]2[(ON)Fe(S,SO2-C6H- 3,6-Cl2)(S,S-C6H2-3,6-Cl2)]2 (14)………………………………….…113 Figure 3-45. Conversion of complex 14 (0.1 mM in CH3CN solution) to complex 13……………………………………………...…………114 Figure 3-46. ORTEP drawing and labeling scheme of [Fe(NO)(S,S-C6H2- 3,6-Cl2)2]- (13) anion with thermal ellipsoids drawn at 50 % probability level……………………………………………...116 Figure 3-47. IR spectrum (KBr) of [PPN]2[Fe(NO)(S,S-C6H2-3,6-Cl2)2] (15)….....118 Figure 3-48. [PPN]2[(ON)Fe(S,SO2-C6H2-3,6-Cl2)(S,S-C6H2-3,6-Cl2)] (16)…..…..119 Figure 3-49. Cyclic voltammogram (100 mV/s) of (a) complex 15 and (b) complex 16………………………………………………………..119 Figure 3-50. Conversion of complex 16 (0.1 mM in CH3CN solution) to complex 15………………………………………………..…….…120 Figure 3-51. ORTEP drawing and labeling scheme of [Fe(NO)(S,S-C6H2- 3,6-Cl2)2]2- (15) anion with thermal ellipsoids drawn at 50 % probability level……………………………………………..…123 Figure 3-52. ORTEP drawing and labeling scheme of [Fe(NO)(S,SO2-C6H2- 3,6-Cl2)(S,S-C6H2-3,6-Cl2)]2- (16) anion with thermal ellipsoids drawn at 50 % probability level………………………….….…….…124 List of Tables Table 1-1. Geometry of the Ni-Fe active center of D. vulgaris Miyazaki hydrogenase…………….……………………………………….4 Table1-2. Geometry of iron center in NO-inactivated NHase……….……………….20 Table 2-1. Crystallographic Data of [PPN][NiII(Se-p-C6H4-Cl)(P(o-C6H4S)2(o-C6H4SH))] (1) and [PPN][NiII((2-S-C4H3S)(P(o-C6H4S)2(o-C6H4SH))] (2)……………....…40 Table 2-2. Crystallographic Data of [PPN][NiIII(Se-p-C6H4-Cl)(P(o-C6H4S)3)] (3) and [PPN][NiIII(2-S-C4H3S)(P(o-C6H4S)3)] (4)…………………….……41 Table 2-3. Crystallographic Data of [NiII(PPh3)(P(o-C6H4S)2(o-C6H4SH))] (5a) and [NiII(PPh3)(P(o-C6H4S)2(o-C6H4SH))] (5b)…………………….…...42 Table 2-4. Crystallographic Data of [NiIII(PPh3)P(o-C6H4S)3] (6) and [PPN][NiII(PPh3)(P(o-C6H4S)3)] (7)……………………..…...…………..43 Table 2-5. Crystallographic Data of [PPN][NiIICl(P(o-C6H4S)2(o-C6H4SH))] (9)…..44 Table 2-6. Crystallographic Data of [NiII(PPh3)(P(o-C6H4S)2(o-C6H4-SCH3))] (10a) and [NiII(PPh3)(P(o-C6H4S)2(o-C6H4-SCH3))] (10b)…………………….45 Table 2-7. Crystallographic Data of [PPN][NiII(SPh)(P(o-C6H4S)2(o-C6H4- SCH3))] (11) and [PPN][NiII(SePh)(P(o-C6H4S)2(o-C6H4-SCH3))] (12).. 46 Table 2-8. Crystallographic Data of [PPN][Fe(NO)(S,S-C6H2-3,6-Cl2)2] (13)……...52 Table 2-9. Crystallographic Data of [Me4N]2[Fe(NO)(S,S-C6H2-3,6-Cl2)2] (15)….. 53 Table 2-10. Crystallographic Data of [PPN]2[Fe(NO)(S,SO2-C6H2-3,6-Cl2)(S,S-C6H2-3,6-Cl2)] (16)……… 54 Table 3-1. Selected bond distances (Å) and angles (deg) for [PPN][NiII(Se-p-C6H4-Cl)(P(o-C6H4S)2(o-C6H4SH))] (1) ………………62 Table 3-2. Selected bond distances (Å) and angles (deg) for [PPN][NiII(2-S-C4H3S)(P(o-C6H4S)2(o-C6H4SH))] (2)…………………..63 Table 3-3. Selected bond distances (Å) and angles (deg) for [PPN][NiIII(Se-p-C6H4-Cl)P(o-C6H4S)3] (3)……………………………..74 Table 3-4. Selected bond distances (Å) and angles (deg) for [PPN][NiIII(2-S-C4H3S)(P(o-C6H4S)3)] (4)………………………………76 Table 3-5. Selected bond distances (Å) and angles (deg) for [NiII(PPh3)(P(o-C6H4S)2(o-C6H4SH))] (5a)……………………………...83 Table 3-6. Selected bond distances (Å) and angles (deg) for [NiII(PPh3)(P(o-C6H4S)2(o-C6H4SH))] (5b)……………………………...84 Table 3-7. Selected bond distances (Å) and angles (deg) for [NiIII(PPh3)(P(o-C6H4S)3)] (6)………………….………………………...91 Table 3-8. Selected bond distances (Å) and angles (deg) for [PPN][NiII(PPh3)(P(o-C6H4S)3)] (7)…………………………….………..92 Table 3-9. Selected bond distances (Å) and angles (deg) for [PPN][NiIICl(P(o-C6H4S)2(o-C6H4SH))] (9)……………….…………….96 Table 3-10. IR νS-H stretching bands (KBr) for complexes 1, 2, 5a, 5b, 8, and 9……97 Table 3-11. Selected bond distances (Å) and angles (deg) for [NiII(PPh3)(P(o-C6H4S)2(o-C6H4-SCH3))] (10a) …………..…………...101 Table 3-12. Selected bond distances (Å) and angles (deg) for [NiII(PPh3)(P(o-C6H4S)2(o-C6H4-SCH3))] (10b)……………………....101 Table 3-13. Selected bond distances (Å) and angles (deg) for [PPN][NiII(SPh)(P(o-C6H4S)2(o-C6H4-SCH3))] (11)…………..………..107 Table 3-14. Selected bond distances (Å) and angles (deg) for [PPN][NiII(SePh)(P(o-C6H4S)2(o-C6H4-SCH3))] (12)……..……………108 Table 3-15. Selected bond distances (Å) and angles (deg) for [PPN][Fe(NO)(S,S-C6H2-3,6-Cl2)2] (13) ……...………..……………...116 Table 3-16. Selected bond distances (Å) and angles (deg) for [Me4N]2[Fe(NO)(S,S-C6H2-3,6-Cl2)2] (15) …………………...…..123 Table 3-17. Selected bond distances (Å) and angles (deg) for [PPN]2[Fe(NO)(S,SO2-C6H2-3,6-Cl2)(S,S-C6H2-3,6-Cl2)] (16)……….125 Table 3-18. Comparisons of the Fe-N(1)-O(1) bond angles, Fe–N(1), N(1)-O(1), Fe–S bond distances and the displaced distances of iron atom from the four sulfur-atom plane………………………...…………..…126 List of APPENDIX Figure A-1. UV/vis spectrum of [PPN][NiII(Se-p-C6H4-Cl)(P(o-C6H4S)2(o- C6H4SH))] (1) in CH2Cl2 solution………………………………….145 Figure A-2. UV/vis spectrum of [PPN][NiII(2-S-C4H3S)(P(o-C6H4S)2(o- C6H4SH))] (2) in CH2Cl2 solution…………………………………145 Figure A-3. UV/vis spectrum of [PPN][NiIII(Se-p-C6H4-Cl)(P(o- C6H4S)3)] (3) in CH2Cl2 solution……………………………………. .146 Figure A-4. UV/vis spectrum of [PPN][NiIII(2-S-C4H3S)(P(o-C6H4S)3)] (4) in CH2Cl2 solution…………………………………………………..…146 Figure A-5. UV/vis spectrum of [NiII(PPh3)(P(o-C6H4S)2(o-C6H4SH))] (5) in CH2Cl2 solution……………………………………………………..147 Figure A-6. UV/vis spectrum of [PPN][NiIII(PPh3)(P(o-C6H4S)3)] (6) in CH2Cl2 solution………………………………………………………..147 Figure A-7. UV/vis spectrum of [PPN][NiII(PPh3)(P(o-C6H4S)3)] (7) in CH2Cl2 solution…………………………………………………….….148 Figure A-8. UV/vis spectrum of [NiIICl(P(o-C6H4S)2(o-C6H4SH))] (9) in CH2Cl2 solution…………………………………………………..……148 Figure A-9. UV/vis spectrum of [NiII(PPh3)(P(o-C6H4S)2(o-C6H4-SCH3))] (10) in CH2Cl2 solution……………………………………………….….149 Figure A-10. UV/vis spectrum of [PPN][NiII(SPh)(P(o-C6H4S)2(o- C6H4-SCH3))] (11) in CH2Cl2 solution……………………….……..149 Figure A-11. UV/vis spectrum of [PPN][NiII(SePh)(P(o-C6H4S)2(o- C6H4-SCH3))] (12) in CH2Cl2 solution…………………………...…150 Figure A-12. UV/vis spectrum of [PPN][Fe(NO)(S,S-C6H2-3,6-Cl2)2] (13) in CH2Cl2 solution……………………………………………….….150 Figure A-13. UV/vis spectrum of [PPN]2[Fe2(NO)2(S,SO2-C6H2-3,6-Cl2)2 (S,S-C6H2-3,6-Cl2)2] (14) in CH2Cl2 solution………………………..151 Figure A-14. UV/vis spectrum of [PPN]2[Fe(NO)(S,S-C6H2-3,6-Cl2)2] (15) in CH2Cl2 solution…………………………………………………....151 Figure A-15. UV/vis spectrum of [PPN]2[Fe(NO)(S,SO2-C6H2-3,6-Cl2) (S,S-C6H2-3,6-Cl2)] (16) in CH2Cl2 solution…………….…………..152

    References
    1. (a) Carepo, M.; Tierney, D. L.; Brondino, C. D.; Yang, T. C.; Pamplona, A.; Telser, J.; Moura, I.; Moura, J. J. G.; Hoffman, B. M. J. Am. Chem. Soc. 2002, 124, 281-286. (b)Albracht, S. P. J. Biochim. Biophys. Acta 1994, 1188, 167-204. (c) van der Zwaan, J. W.; Coremans, J. M. C. C.; Bouwens, E. C. M.; Albracht, S. J. P. Biochim. Biophys. Acta 1990, 1041, 101-110.
    2. (a) Volbeda, A.; Charon, M. H.; Piras, C.; Hatchikian, E. C.; Frey, M.; Fontecilla-Camps, J. C. Nature 1995, 373, 580-587. (b) Garcin, E.; Vernede, X.; Hatchikian, E. C.; Volbeda, A.; Frey, M.; Fontecilla-Camps, J.-C. Structure 1999, 7, 557-566. (c) Happe, R. P.; Roseboom, W.; Pierik, A. J.; Albracht, S. P. J Nature 1997, 385, 126. (d) Volbeda, A.; Garcin, E.; Piras, C.; De Lacey, A. L.; Fernandez, V. M.; Hatchikian, E. C.; Frey, M.; Fontecilla-Camps, J. C. J. Am. Chem. Soc. 1996, 118, 12989-12996.
    3. (a) Higuchi, Y.; Yagi, T.; Yasuoka, N. Structure 1997, 5, 1671-1680. (b) Higuchi, Y.; Ogata, H.; Miki, K.; Yasuoka, N.; Yagi, T. Structure 1999, 7, 549-556.
    4. (a) Rousset, M.; Montet, Y.; Guigliarelli, B.; Forget, A.; Asso, M.; Bertrand, P.; Fontecilla-Camps, J. C.; Hatchikian, E. C. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 11625-11630. (b) Nicolet, Y.; Piras, C.; Legrand, P.; Hatchikian, C. E.; Fontecilla-Camps, J. C. Structure 1999, 15, 13-23.
    5. Matias, P. M.; Soares, C. M.; Saraiva, L. M.; Coelho, R.; Morais, J.; Le Gall, J.; Carrondo, M. A. J. Biol. Inorg. Chem. 2001, 6, 63-81.
    6. (a) Schink, B.; Schlegel, H. G. Biochim. Biophys. Acta 1979, 567, 315-324. (b) Schneider, K.; Schlegel, H. G. Biochim. Biophys. Acta 1976, 452, 66-80. (c) Bernhard, M.; Buhrke, T.; Bleijlevens, B.; DeLacey, A. L.; Fernandez, V. M.; Albracht, S. P. J.; Friedrich, B. J. Biol. Chem. 2001, 276, 15592-15597. (d) Kleihues, L.; Lenz, O.; Bernhard, M.; Buhrke, T.; Friedrich, B. J. Bacteriol. 2000, 182, 2716-2724.
    7. Haumann, M.; Porthun, A.; Buhrke, T.; Liebisch, P.; Meyer-Klaucke, W.; Friedrich, B.; Dau, H. Biochemistry 2003, 42, 11004-11015.
    8. (a) Burgdorf, T.; Loscher, S.; Liebisch, P.; Van der Linden, E.; Galander, M.; Lendzian, F.; Meyer-Klaucke, W.; Albracht, S. P. J.; Friedrich, B.; Dau, H.; Haumann, M. J. Am. Chem. Soc. 2005, 127, 576-592. (b) Happe, R. P.; Roseboom, W.; Egert, G.; Friedrich, C. G.; Massanz, C.; Friedrich, B.; Albracht, S. P. J. FEBS Lett. 2000, 466, 259-263.
    9. Stein, M.; Lubitz, W. Curr. Opin. Chem. Biol. 2002, 6, 243-249.
    10. Maroney, M. J.; Bryngelson, P. A. J. Biol. Inorg. Chem. 2001, 4, 453-459.
    11. Niu, S.; Thomson, L. M.; Hall, M. B. J. Am. Chem. Soc. 1999, 121, 4000-4007.
    12. De Gioia, L.; Fantucci, P.; Guigliarelli, B.; Bertrand, P. Inorg. Chem. 1999, 38, 2658-2662.
    13. (a) Fan, C.; Teixeira, M.; Moura, J.; Moura, I.; Huynh, B. H.; Le Gall, J.; Peck, H. D., Jr.; Hoffman, B. M. J. Am. Chem. Soc. 1991, 113, 20-24. (b) Whitehead, J. P.; Gurbiel, R. J.; Bagyinka, C.; Hoffman, B. M.; Maroney, M. J. J. Am. Chem. Soc. 1993, 115, 5629-5635.
    14. Foerster, S.; Stein, M.; Brecht, M.; Ogata, H.; Higuchi, Y.; Lubitz, W. J. Am. Chem. Soc. 2003, 125, 83-93.
    15. Foerster, S.; van Gastel, M.; Brecht, M.; Lubitz, W. J. Biol. Inorg. Chem. 2005, 10, 51-62.
    16. Ogata, H.; Mizoguchi, Y.; Mizuno, N.; Miki, K.; Adachi, S.-I.; Yasuoka, N.; Yagi, T.; Yamauchi, O.; Hirota, S.; Higuchi, Y. J. Am. Chem. Soc. 2002, 124, 11628-11635.
    17. Lai, C.-H.; Reibenspies, J.H.; Darensbourg, M.Y. Angew. Chem. Int. Ed. 1996, 35, 2390-2393.
    18. Marr, A. C.; Spencer, D. J. E.; Schröder, M. Coord. Chem. Rev. 2001, 219-221, 1055-1074.
    19. (a) Davies, S.C.; Evans, D.J.; Hughes, D.L.; Longhurst, S.; Sanders, J.R. J. Chem. Soc. Chem. Commun. 1999, 1935-1936. (b) Smith, M. C.; Barclay, J. E.; Cramer, S. P.; Davies, S. C.; Gu, W. W.; Hughes, D. L.; Longhurst, S.; Evans, D. J. J. Chem. Soc., Dalton Trans. 2002, 2641-2647.
    20. Sellmann, D.; Geipel, F.; Lauderbach, F.; Heinemann, F. W. Angew. Chem. Int. Ed. 2002, 41, 632-634.
    21. Li, S.; Hall, M. B. Inorg. Chem. 2001, 40, 18-24.
    22. Li, Z.; Ohki, Y.; Tatsumi, K. J. Am. Chem. Soc. 2005, 127, 8950-8951.
    23. Rauchfuss, T. B.; Contakes, S. M.; Hsu, S. C. N.; Reynolds, M. A.; Wilson, S. R. J. Am. Chem. Soc. 2001, 123, 6933-6934.
    24. Sellmann, D.; Geipel, F.; Heinemann, F. W. Chem. Eur. J. 2002, 8, 958-966.
    25. Liaw, W.-F.; Lee, J.-H.; Gau, H.-B.; Chen, C.-H.; Jung, S.-J.; Hung, C.-H.; Chen, W.-Y.; Hu, C.-H.; Lee, G.-H. J. Am. Chem. Soc. 2002, 124, 1680-1688.
    26. Liaw, W.-F.; Horng, Y.-C.; Ou, D.-S.; Ching, C.-Y.; Lee, G.-H.; Peng, S.-M. J. Am. Chem. Soc. 1997, 119, 9299-9300.
    27. Stavropoulos, P.; Muetterties, M. C.; Carrie´, M.; Holm, R. H. J. Am. Chem. Soc. 1991, 113, 8485-8492.
    28. Nguyen, D. H.; Hsu, H.-F.; Millar, M.; Koch, S. A.; Achim, C.;Bominaar, E. L.; Mu¨nck, E. J. Am. Chem. Soc. 1996, 118, 8963-8964.
    29. Zimmer, M.; Schulte, G.; Luo, X.-L.; Crabtree, R. H. Angew. Chem. Int. Ed., 1991, 30, 193-194.
    30. Sellmann, D.; Prakash, R.; Heinemann, F. W. Eur. J. Inorg. Chem. 2004, 1847-1858.
    31. (a) Curtis, C. J.; Miedaner, A.; Ciancanelli, R.; Ellis, W. W.; Noll, B. C.; DuBois, M. R.; DuBois, D. L. Inorg. Chem., 2003, 42, 216-227. (b) Curtis, C. J.; Miedaner, A.; Ellis, W. W.; DuBois, D. L. J. Am. Chem. Soc. 2002, 124, 1918-1925.
    32. Clegg, W.; Henderson, R.A. Inorg. Chem. 2002, 41, 1128-1135.
    33. Kobayashi, M.; Shimizu, S. Nitrile Hydrolases. Curr. Opin. Chem. Biol. 2000, 4, 95-102.
    34. Endo, I.; Odaka, M.; Yohda, M. Trends Biotechnol. 1999, 17, 244-248.
    35. Nagasawa, T.; Yamada, H. Trends Biotechnol. 1989, 7, 153-158.
    36. Kobayashi, M.; Nagasawa, T.; Yamada, H. Tibtech 1992. 10, 402-408.
    37. Faber, K.; Patel, R. Curr. Opin. Biotechnol. 2000, 11, 517-519.
    38. Huang, W.; Jia, J.; Cummings, J.; Nelson, M.; Schneider, G.; Lindqvist, Y. Structure 1997, 5, 691-699.
    39. Doan, P. E.; Nelson, M. J.; Jin, H.; Hoffman, B.M.; J. Am. Chem. Soc. 1996, 118, 7014-7015.
    40. (a) Nelson, M. J.; Jin, H.; Turner, I. M., Jr.; Grove, G.; Scarrow, R. C.; Brennan, B. A.; Que, L., Jr. J. Am. Chem. Soc. 1991, 113, 7072-7073. (b) Sugiura, Y.; Kuwahara, J.; Nagasawa, T.; Yamada, H. J. Am. Chem. Soc. 1987, 109, 5848-5850. (c) Nagasawa, T.; Ryuno, K.; Yamada, H. Biochem. Biophys. Res. Commun. 1986, 139, 1305-1312.
    41. Brennan, B. A.; Cummings, J. G.; Chase, D. B.; Turner, I. M., Jr.; Nelson, M. J. Biochemistry 1996, 35, 10068-10077.
    42. Tsai, R.; Yu, C. A.; Gunsalus, I. C.; Peisach, J.; Blumberg, W.; Orme-Johnson, W. H.; Beinert, H. Proc. Natl. Acad. Sci. U.S.A. 1970, 66, 1157-1163.
    43. Nagashima, S.; Nakasako, M.; Dohmae, N.; Tsujimura, M.; Takio, K.; Masafumi, O.; Yohda, M.; Kamiya, N.; Endo, I. Nat. Struct. Biol.1998, 5, 347-351.
    44. (a) Piersma, S. R.; Nojiri, M.; Tsujimura, M.; Noguchi, T.; Odaka, M.; Yohda, M.; Inoue, Y.; Endo, I. J. Inorg. Biochem. 2000, 80, 283-288. (b) Endo, I.; Nojiri, M.; Tsujimura, M.; Nakasako, M.; Nagashima, S.; Yohda, M.; Odaka, M. J. Inorg. Biochem. 2001, 83, 247-253.
    45. Boone, A. J.; Cory, M. G.; Scott, M. J.; Zerner, M. C.; Richards, N. G. J. Inorg. Chem. 2001, 40, 1837-1845.
    46. Miyanaga, A.; Fushinobu, S.; Ito, K.; Wakagi, T. Biochem. Biophys. Res. Commun.2001, 288, 1169-1174.
    47. Mayer, S. M.; Lawson, D. M.; Gormal, C. A.; Roe, S. M.; Smith, B. E. J. Mol. Biol. 1999, 292, 871-891.
    48. Doukov, T. I.; Iverson, T. M.; Servalli, J.; Ragsdale, S. W.; Drennan, C. L. Science 2002, 298, 567-572.
    49. Murakami, T.; Nojiri, M.; Nakayama, H.; Odaka, M.; Yohda, M.; Dohmae, N.; Takio, K.; Nagamune, T.; Endo, I. Protein Sci. 2000, 9, 1024-1030.
    50. Greene, S. N.; Chang, C.H.; Richards, N. G. J. J. Chem. Soc. Chem. Commun. 2002, 2386-2387.
    51. (a) Odaka, M.; Fujii, K.; Hoshino, M.; Noguchi, T.; Tsujimura, M.; Nagashima, S.; Yohada, N.; Nagamune, T.; Inoue, I.; Endo, I. J. Am. Chem. Soc. 1997, 119, 3785-3791. (b) Tsujimura, M.; Odaka, M.; Nagashma, S.; Yohda, M.; Endo, I. J. Biochem. 1996, 119, 407-413. (c) Honda, J.; Kandori, H.; Okada, T.; Nagamune, T.; Shichida, Y.; Sasabe, H.; Endo, I. Biochemistry 1994, 33, 3577-3583. (d) Nagamune, T.; Honda, J.; Kobayashi, Y.; Sasabe, H.; Endo, I.; Ambe, F. Hyperfine Interact. 1992, 71, 1271-1274. (e) Noguchi, T.; Honda, J.; Nagamune, T.; Sasabe, H.; Inoue, Y.; Endo, I. FEBS Lett. 1995, 358, 9-12.
    52. Heinrich, L.; Mary-Verla, A.; Li, Y.; Vaissermann, J.; Chottard, J.-C. Eur. J. Inorg. Chem. 2001, 2203-2206.
    53. (a) Shoner, S. C.; Barnhart, D.; Kovacs, J. A. Inorg. Chem. 1995, 34, 4517-4518. (b) Jackson, H. L.; Shoner, S. C.; Rittenberg, D.; Cowen, J. A.; Lovell, S.; Barnhart, D.; Kovacs, J. A. Inorg. Chem. 2001, 40, 1646-1653.
    54. Noveron, J. C.; Herradora, R.; Olmstead, M. M.; Mascharak, P. K. Inorg. Chim. Acta. 1999, 285, 269-276.
    55. (a) Tweedle, M.; Wilson, L. J. J. Am. Chem. Soc. 1976, 98, 4824-4834. (b) Mascharak, P. K. Coord. Chem. Rev. 2002, 225, 210-214
    56. Noveron, J. C.; Olmstead, M. M.; Mascharak, P. K. Inorg. Chem. 1998, 37, 1138-1139.
    57. Ellison, J. J.; Nienstedt, A.; Shoner, S. C.; Barnhart, D.; Cowen, J. A.; Kovacs, J. A. J. Am. Chem. Soc. 1998, 120, 5691-5700.
    58. Noveron, J. C.; Olmstead, M. M.; Mascharak, P. K. J. Am. Chem. Soc. 2001, 123, 3247-3259.
    59. Shearer, J.; Jackson, H. L.; Schweitzer, D.; Rittenberg, D. K.; Leavy, T. M.; Kaminsky, W.; Scarrow, R. C.; Kovacs, J. A. J. Am. Chem. Soc. 2002, 124, 11417-11428.
    60. Tyler, L. A.; Noveron, J. C.; Olmstead, M. M.; Mascharak, P. K. Inorg. Chem. 1999, 38, 616-617.
    61. Galardon, E.; Giorgi, M.; Artaud, I. J. Chem. Soc. Chem. Commun. 2004, 286-287.
    62. Schweitzer, D.; Ellison, J. J.; Shoner, S. C.; Lovell, S.; Kovacs, J. A. J. Am. Chem. Soc. 1998, 120, 10996-10997.
    63. Grapperhaus, C. A.; Patra, A. K.; Mashuta, M. S. Inorg. Chem. 2002, 41, 1039-1041.
    64. Chatel, S.; Chauvin, A. S.; Tuchagues, J. P.; Leduc, P.; Bill, E.; Chottard, J. C.; Mansuy, D.; Artaud, I. Inorg. Chim. Acta. 2002, 336, 19-28.
    65. Block, E.; Ofori-Okai, G.; Zubieta, J. J. Am. Chem. Soc. 1989, 111, 2327-2329.
    66. Hedberg, L.; Hedberg, K.; Satija, S. K.; Swanson, B. I. Inorg. Chem. 1985, 24, 2766. (b) Albano, V. G; Araneo, A; Bellon, P. L.; Ciani, G.; Manassero, M. J. Organomet. Chem. 1974, 67, 413.
    67. Liaw, W.-F.; Chen, C.-H.; Lee, C.-M.; Lee, G.-H.; Peng, S.-M. J. Chem. Soc., Dalton Trans. 2001, 138-143.
    68. Franolic, J. D.; Wang, W. Y.; Millar, M. J. Am. Chem. Soc. 1992, 114, 6587-6588.
    69. Sheldrick, G. M. SADABS, Siemens Area Detector Absorption Correction Program; University of Göttingen: Germany, 1996.
    70. Sheldrick, G. M. SHELXTL, Program for Crystal Structure Determination; Siemens Analytical X-ray Instruments Inc.: Madison, WI, 1994.
    71. Lee, C.-M.; Chen, C.-H.; Ke, S.-C.; Lee, G.-H.; Liaw, W.-F. J. Am. Chem. Soc. 2004, 126, 8406-8412.
    72. (a) Allan, C. B.; Davidson, G.; Choudhury, S. B.; Gu, Z.; Bose, K.; Day, R. O.; Maroney, M. J. Inorg. Chem. 1998, 37, 4166-4167. (b) James, T. L.; Cai, L.; Mutterties, M. C.; Holm, R. H. Inorg. Chem. 1996, 35, 4148-4161. (c) Cha, M.; Shoner, S. C.; Kovacs, J. A. Inorg. Chem. 1993, 32, 1860-1863.
    73. Darensbourg, M. Y.; Liaw, W.-F.; Riordan, C. G. J. Am. Chem. Soc. 1989, 111, 8051-8052.
    74. (a) Cha, M.; Gatlin, C. L.; Critchlow, S. C.; Kovacs, J. A. Inorg. Chem. 1993, 32, 5868-5877. (b) Kruger, H.-J.; Holm, R. H. J. Am. Chem. Soc. 1990, 112, 2955-2963. (c) Mills, D. K.; Reibenspies, J. H.; Darensbourg, M. Y. Inorg. Chem. 1990, 29, 4364-4366. (d) Baidya, M.; Olmstead, M.; Mascharak, P. K. Inorg. Chem. 1991, 30, 929-937. (e) Kumar, M.; Colpas, G. J.; Day, R. O.; Maroney, M. J. Am. Chem. Soc. 1989, 111, 8323-8325. (f) Fox, S.; Wang, Y.; Silver, A. Millar, M. J. Am. Chem. Soc. 1990, 112, 3218-3220.
    75. Darensbourg, M. Y.; Liaw, W.-F.; Riordan, C. G. J. Am. Chem. Soc. 1989, 111, 8051-8052.
    76. Grove, D. M.; van Koten, F.; Zoet, R. J. Am. Chem. Soc. 1983, 105, 1379-1380.
    77. (a) Stein, C. A.; Taube, H. Inorg. Chem. 1979, 18, 2212-2216. (b) Branscombe, N. D. J.; Atkins, A. J.; Marin-Becerra, A.; McInnes, E. J. L.; Mabbs, F. E.; McMaster, J.; Schröder, M. Chem. Commun. 2003, 1098-1099. (c) Clark, K. A.; George, A.; Brett, T. J.; Ross, C. R.; Shoemaker, R. K. Inorg. Chem. 2000, 39, 2252-2253.
    78. Signor, L.; Knuppe, C.; Hug, R.; Schweizer, B.; Pfaltz, A.; Jaun, B. Chem. Eur. J. 2000, 6, 3508-3516.
    79. (a) Ashby, M. T.; Enemark, J. H.; Lichtenberger, D. L. Inorg. Chem. 1988, 27, 191-197. (b) Jacobsen, H.; Kraatz, H.-B.; Ziegler, T.; Booran, P. M. J. Am. Chem. Soc. 1992, 114, 7851-7860. (c) Kraatz, H.-B.; Jacobsen, H.; Ziegler, T.; Boorman, P. M. Organometallics 1993, 12, 76-80. (d) McGuire, D. G.; Khan, M. A.; Ashby, M. T. Inorg. Chem. 2002, 41, 2202-2208.
    80. Lee, C.-M.; Hsieh, C.-H.; Dutta, A.; Lee, G.-H.; Liaw, W.-F. J. Am. Chem. Soc. 2003, 125, 11492-11493.
    81. Farmer, P. J.; Verpeaux, J.-N.; Amatore, C.; Darensbourg, M. Y.; Musie, G. J. Am. Chem. Soc. 1994, 116, 9355-9356.
    82. McCleverty, J. A. Chem. Rev. 2004, 104, 403-418.
    83. Eisenberg, R.; Meyer, C. D. Acc. Chem. Res. 1975, 8, 26-34.
    84. (a) Herebian, D.; Bothe, E.; Bill, E.; Weyhermuller, T.; Wieghardt, K. J. Am. Chem. Soc. 2001, 123, 10012. (b) Sun, X.; Chun, H.; Hildenbrand, K.; Bothe, E.; Weyhermuller, T.; Neese, F.; Wieghardt, K. Inorg. Chem. 2002, 41, 4295. (c) Hsieh, C.-H.; Hsu, I.-J.; Lee, C.-M.; Ke, S.-C.; Wang, T.-Y.; Lee, G.-H.; Wang, Y.; Chen, J.-M.; Lee, J.-F.; Liaw, W.-F. Inorg, Chem. 2003, 42, 3925-3933.
    85. Davies, G. R.; Mais, R. H. B.; Owston, P. G. Chem. Commun. 1968, 81-82.
    86. Qian, L.; Singh, P.; Ro, H.; Hatfield, W. E. Inorg. Chem. 1990, 29, 761-763.
    87. (a) Liaw, W.-F.; Lee, N.-H.; Chen, C.-H.; Lee, C.-M.; Lee, G.-H.; Peng, S.-M. J. Am. Chem. Soc. 2000, 122, 488-494. (b) Liaw, W.-F.; Hsieh, C.-K.; Lin, G.-Y.; Lee, G.-H. Inorg. Chem. 2001, 40, 3468-3475.
    88. Enemark, J. H.; Feltham, R. D. Coord. Chem. Rev. 1974, 13, 339-406.
    89. (a) Patra, A. K.; Afshar, R.; Olmstead, M. M.; Mascharak, P. K. Angew. Chem. Int. Ed. 2002, 41, 2512-2515. (b) Afshar, R. K.; Patra, A. K.; Olmstead, M. O.; Mascharak, P. K. Inorg. Chem. 2004, 43, 5736-5743.
    90. Pierik, A. J.; Schmelz, M.; Lenz, O.; Friedrich, B.; Albracht, S. P. FEBS Lett. 1998, 438, 231-235.
    91. Ogata, H.; Mizoguchi, Y.; Mizuno, N.; Miki, K.; Adachi, S.-I.; Yasuoka, N.; Yagi, T.; Yamauchi, O.; Hirota, S.; Higuchi, Y. J. Am. Chem. Soc. 2002, 124, 11628-11635.
    92. Foerster, S.; Stein, M.; Brecht, M.; Ogata, H.; Higuchi, Y.; Lubitz, W. J. Am. Chem. Soc. 2003, 125, 83-93.
    93. Greene, S. N.; Chang, C. H.; Richards, N. G. J. Chem. Commun. 2002, 2386-2387.
    94. (a) Noguchi, T. Hoshino, M.; Tsujimura, M.; Odaka, M.; Inoue, Y.; Endo, I. Biochemistry 1996, 35, 16777-16781. (b) Scarrow, R. C.; Stickler, B. S.; Ellison, J. J.; Shoner, S. C.; Kovacs, Cummings, J. C.; Nelson, M. J. J. Am. Chem. Soc. 1998, 120, 9237-9245.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE