研究生: |
李品頤 Lee, Pin Yi |
---|---|
論文名稱: |
以電漿輔助式分子束磊晶法於矽基板成長氮化鎵 Growth and Characterization of GaN Grown on Silicon by Plasma-Assisted Molecular Beam Epitaxy |
指導教授: |
鄭克勇
Cheng, Keh Yung |
口試委員: |
謝光前
吳孟奇 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2016 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 61 |
中文關鍵詞: | 氮化鎵 、分子束磊晶 |
外文關鍵詞: | GaN, MBE |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文之主要內容在討論使用電漿式輔助分子束磊晶技術進行氮化鎵之磊晶成長,並透過數種方法解決”於矽基板上成長氮化鎵”所遭遇之困難;首先,因為幾近無應力且低缺陷之氮化鎵奈米柱可成長在矽基板上,故其成為本論文使用之第一個方法,在獲得最佳化氮化鋁之成長條件後,可使氮化鎵奈米柱沿<111>方向垂直基板成長,並藉由改變成長參數,讓氮化鎵磊晶生長模式由三維轉為二維,讓成長奈米柱後使其頂端接合成為氮化鎵薄膜,由掃描式電子顯微鏡觀察到形成薄膜後,接著使用拉曼光譜儀分析磊晶層之殘餘應力,從結果得到當氮化鎵呈現奈米柱型態時,確實無殘餘應力,但當改變生長條件使其頂端接合並形成薄膜後,薄膜即有嚴重之殘存張應力,因此應力之吸收層在整個磊晶結構上依然是必要的。下一步藉由氮化鋁鎵及氮化鎵之超晶格結構來產生壓應力以抵消原本應該存在之張應力,由高解析度X光繞射及拉曼光譜之分析結果得知,3微米厚之氮化鎵磊晶層中超晶格不僅可解決應力的問題,也可同時讓磊晶品質得到改善,在使用高解析度X光繞射分析氮化鋁鎵中鋁之含量為12%,接著使用改良後之Matthews and Blakeslee模型計算超晶格之臨界厚度,並使用拉曼光譜儀分析使用超晶格之樣品,推測張應力與超晶格產生之壓應力抵銷,故可以解決殘存應力之問題,以超晶格當作緩衝層可成長3微米厚之無裂痕磊晶層,為了更進一步減低缺陷密度,使用軟性奈米壓印技術製作奈米洞於磊晶層上並進行二次磊晶,奈米洞之功能在於阻擋缺陷向上延伸,來達到降低表層之缺陷密度的目標,最後,藉由不同結構的樣品,超晶格及奈米洞的分析結果得以使用以下儀器分別地進行材料分析,包含:掃描式電子顯微鏡、拉曼光譜儀、光致發光頻譜儀、高解析度X光繞射儀及穿透式電子顯微鏡。
The main focus of this dissertation is on the growth of GaN on Si(111) through different approaches using plasma-assisted molecular beam epitaxy (PAMBE). Since the nearly strain-free and low dislocation density III-nitride nanorods (NRs) can be grown on Si(111), the use of NRs as the buffer layer becomes first approach in this study. During the growth, the unavoidable surface nitridation of silicon is the first problem to be solved. After that, the AlN is successfully grown in a narrow growth window to obtain smooth and droplet-free layer with desired polarity for the following GaN epilayer. Then, uniform GaN NRs oriented along <111> are grown using the AlN as a buffer layer. To change the growth mode from three-dimension (3-D) to two dimension (2-D), various growth conditions are used to investigate the growth mode of GaN. Next, the coalescence of GaN NRs into a continuous GaN film is demonstrated by growing under a 2-D growth mode. However, Raman scattering spectroscopy analysis results reveals that the strain-free condition exists only in GaN NRs. Whenever the NRs begin to coalesce, the tensile stress is detected at the same time. Therefore, a strain-relaxing layer is still necessary for the growth of GaN on Si. Therefore, the techniques of superlattices (SLs) is applied to solve residual strain problem. By optimizing the growth conditions of AlGaN/GaN SLs, a flat GaN surface can be obtained with an average roughness of less than 0.5 nm. By using high resolution X-ray diffraction measurements, the mole fraction of Al in AlGaN is determined to be 12%. The thickness of each layer in SLs is within the critical thickness determined by the improved Matthews and Blakeslee model. The results of Raman spectroscopy of a 3 μm crack-free top GaN epilayer show reduced tensile stress to nearly strain-free. To further improve the crystalline quality, a nano-holes pattern is fabricated into voids in the epilayer to block the propagation of dislocations. The patterned nano-holes are fabrication in a 2 inch wafer through soft nano-imprint lithography. Finally, SLs and nano-holes are combined together to improve the crystalline quality of GaN. These two methods are optimized separately first before used together by using various structures through analysis of scanning electron microscopy (SEM), Raman scattering spectroscopy, photoluminescence spectroscopy (PL), high resolution X-ray diffraction (HRXRD) and transmission electron microscopy (TEM).
[1] B. Beaumont, M. Vaille, T. Boufaden, B. El Jani, and P. Gibart, J. Cryst. Growth 170, 316 (1997).
[2] V. A. Joshkin, C. A. Parker, S. M. Bedair, L. Y. Krasnobaev, J. J. Cuomo, R. F. Davis and A. Suvkhanov, Appl. Phys. Lett. 72, 2838 (1998).
[3] M. Kim, Y. Do, H. C. Kang, D. Y. Noh, and S. Park, Appl. Phys. Lett. 79, 2713 (2001).
[4] K. Cheng, M. Leys, S. Degroote, M. Germain and G. Borghs, Appl. Phys. Lett. 92, 192111 (2008).
[5] E. Frayssinet, Y. Cordier, H. P. D. Schenk, and A. Bavard, Phys. Status Solidi c 8, 1479 (2011).
[6] E. Feltin, B. Beaumont, P. Vennéguès, M. Vaille, P. Gibart, T. Riemann, J. Christen, L. Dobos, and B. Pécz, J. Appl. Phys. 93, 182 (2003).
[7] E. Feltin, B. Beaumont, M. Laügt, P. de Mierry, P. Vennéguès, H. Lahrèche, M. Leroux, and P. Gibart, Appl. Phys Lett. 79, 3230 (2001).
[8] H. W. Seo, Q. Y. Chen, M. N. Iliev, L. W. Tu, C. L. Hsiao, James K. Mean and Wei-Kan Chu, Appl. Phys. Lett. 88, 153124(2006).
[9] Z. Bougrioua, P. Gibart, E. Calleja , U. Jahn , A. Trampert , J. Ristic , M. Utrera , G. Nataf J. Crystal Growth 309, 113 (2007).
[10] S. Jang, and C. Lee, J. Cryst. Growth 253, 64 (2003).
[11] S. L. Selvaraj, T. Suzue, and T. Egawa, IEEE Electron Device Lett. 30, 587 (2009).
[12] Y. Ni, Z. He, F. Yang, D. Zhou, Y. Yao, G. Zhou, Z. Shen, J. Zhong, Y. Zhen, Z. Wu, B. Zhang, and Y. Liu, J. J. Appl. Phys. 54, 015505 (2015).
[13] P Frigeri, L Seravalli, G Trevisi, and S Franchi, Elsevier 3, 480 (2011).
[14] B. Daudin, F. Widmann, G. Feuillet, Y. Samson, M. Arlery, and J. L. Rouvie`re, Phys. Rev. B 56, R7071 (1997).
[15] G. Koblmüller, S. Fernández-Garrido, E. Calleja, and J. S. Speck, Appl. Phys. Lett. 91, 161904 (2007)
[16] A. M. Sanchez, F. J. Pacheco, S. I. Molina, J. Stemmer, J. Aderhold, and J. Graul, J. Electronic Mater. 30, L17 (2001).
[17] J. W. Matthews and A. E. Blakeslee, J. Crys. Growth 27, 118 (1974).
[18] M. A. Moram, Z. H. Barber, and C. J. Humphreys, J. Appl. Phys. 102, 023505 (2007).
[19] L. Sugiura, J. Appl. Phys. 81, 1633 (1997).
[20] S. D. Hersee, X. Y. Sun, X. Wang, M. N. Fairchild, J. Liang, and J. Xu, J. Appl. Phys. 97, 124608 (2005).
[21] C. Liu, W. N. Wang, S. Denchitcharoen, Alan Gott, Philip A. Shields, and Duncan W. E. Allsopp, Phys Status Solidi c 6, S527 (2009).
[22] A. Strittmatter, S. Rodt, L. Reißmann, D. Bimberg, H. Schröder, E. Obermeier, T. Riemann, J. Christen, and A. Krost, Appl. Phys. Lett. 78, 727 (2001).
[23] A. Dadgara, M. Poschenrieder, J. Blasing , O. Contreras, F. Bertram, T. Riemann, A. Reiher, M. Kunze, I. Daumiller, A. Krtschil, A. Diez, A. Kaluza, A. Modlich, M. Kamp, J. Christen, F.A. Ponce, E. Kohn, and A. Krost, J. Crystal Growth 248, 556 (2003).
[24] H. Lahreche, P. VenneHgues, B. Beaumont, and P. Gibart, J. Crystal. Growth 205, 245 (1999).
[25] G. Koblmueller, R. Averbeck, L. Geelhaar, H. Riechert, W. Hösler, and P. Pongratz, J. Appl. Phys. 93, 9591 (2003).
[26] M. Sobanska, K. Klosek, Z. R. Zytkiewicz, J. Borysiuk, B. S. Witkowski, E. Lusakowska, A. Reszka, and R. Jakiela, Cryst. Res. Technol 47, 307 (2012).
[27] Akihiko Yoshikawa, Ke Xu, Opt. Mater. 23, 7 (2003).
[28] M Tchernycheva, C Sartel, G Cirlin, L Travers, G Patriarche, J-CHarmand, Le Si Dang, J Renard, B Gayral, L Nevou and F Julien, Nanotechnology 18, 385306 (2007).
[29] P. Perlin, C. Jauberthie-Carillon, J. P. Itie, A. S. Miguel, I. Grzegory, and A. Polian, Phys. Rev. B 45, 83 (1992).
[30] D. G. Zhao, S. J. Xu, M. H. Xie, S. Y. Tong, and H. Yang, Appl. Phys. Lett. 83, 677 (2003).
[31] V. Y. Davydov, Y. E. Kitaev, I. N. Goncharuk, and A. N. Smirnov, Phys. Rev. B 58, 12899 (1998).
[32] Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom, J. Vacc. Sci. & Tech. B 14, 4129 (1996).
[33] Roya Maboudian, W. Robert Ashurst, and Carlo Carraro, Sensors and Actuators 82, 219 (2000).
[34] Boris Kobrin, Jeff Chinn, Robert W. Ashurst, and Roya Maboudian, SPIE Proceedings 5716, 151 (2005).
[35] T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul and G. M. Whitesides, Langmuir 18, 5314 (2002).
[36] H. Kang, J. Lee, J. Park and H. H. Lee, Nanotechnology 17, 197 (2006).
[37] W. C. Yang, K. Y. Chen, Kai-Yuan Cheng, Y. L. Wang, K. C. Hsieh, and K. Y. Cheng, J. Cryst. Growth 425, 141 (2015).
[38] B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaars and J. S. Speck, Appl. Phys. Lett. 68, 643 (1996).
[39] S. A. Nikishin, N. N. Faleev, V. G. Antipov, S. Francoeur, L. G. de Peralta, G. A. Seryogin, H. Temkin, T. I. Prokofyeva, M. Holtz, and S. N. G. Chu, Appl. Phys. Lett. 75, 2073 (1999).
[40] T. Kozawa, T. Kachi, H. Kano, H. Nagase, N. Koide and K. Manabe, J. Appl. Phys. 77, 4389 (1995).
[41] F. Calle, F. J. Sánchez,J. M. G. Tijero, M. A. Sánchez-García, E. Calleja and R. Beresford, Semicond. Sci. Technol. 12, 1396 (1997).
[42] E. Calleja, M.A. Sanchez-Garcia, F.J. Sanchez, F. Calle, F.B. Naranjo, E. Munoz, S.I. Molina, A.M. Sanchez, F.J. Pacheco, and R. Garcia, J. Crystal Growth 201, 296 (1999).
[43] M. J. Murphy, K. Chu, H. Wu, W. Yeo, W. J. Schaff, O. Ambacher, J. Smart, J. R. Shealy, L. F. Eastman, and T. J. Eustis, J. Vacc. Sci.&Tech. B 17, 1252 (1999).
[44] X. J. Su, K. Xu, G. Q. Ren, J. F. Wang, Y. Xu, X. H. Zeng, J. C. Zhang, D. M. Cai, T. F. Zhou, Z. H. Liu, and H. Yang, J. Crystal Growth 372, 43 (2013).
[45] J.L. Weyher, S. Miiller, I. Grzegory, and S. Porowskih, J. Crystal Growth 182, 17 (1999).
[46] D. Zhuang and J.H. Edgar, Material Science and Engineering R 48, 1 (2005).