研究生: |
吳宜蓁 Yi-Jen Wu |
---|---|
論文名稱: |
以原子力顯微術奈米微影術製作的金奈米點與奈米線陣列之區域表面電漿共振特性 Localized Surface Plasmon Resonance of Gold Nanodot and Nanowire Arrays Fabricated by Atomic Force Microscopy Nanolithography |
指導教授: |
林鶴南
Heh-Nan Lin |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 72 |
中文關鍵詞: | 原子力顯微術奈米微影術 、金奈米粒子陣列 、區域表面電漿共振 |
外文關鍵詞: | Atomic Force Microscopy Nanolithography, Gold nanoparticle array, Localized Surface Plasmon Resonance |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗使用原子力顯微術奈米微影技術,在矽基板單層阻劑結構上,結合金屬蒸鍍與去阻劑製程,製作微區金奈米點及金奈米線陣列,並使用暗視野模式光學顯微術研究其區域表面電漿共振特性。對金奈米點陣列,退火處理後可得到最小粒徑約50 nm 的奈米點;並將這些點陣列的散射光譜與古典理論推算的同維度金奈米球粒子的模擬結果作對照。對金奈米線陣列,厚度控制在15-20 nm,線寬控制在50-100 nm,發現其散射光譜有兩個峰值,分別位在紅光區與藍光區,且當線寬增加時,紅光波峰產生紅位移,藍光波峰則維持不變;與古典理論計算模擬結果對照顯示,紅光波峰與藍光波峰分別是金奈米線寬度方向與高度方向所產生的共振;此外,紅光波峰隨線寬增加,產生的紅位移與線寬呈現線性關係。進ㄧ步將金奈米線作表面化學改質,使用三種不同的自組裝分子分別鍵結在金奈米線上,發現改質後的散射光譜之紅光波峰有比藍光波峰更為明顯的紅位移現象,顯示金奈米線對其表面周圍介電環境變化敏感的特性。
This work utilizes atomic force microscopy nanolithography to fabricate gold nanodot and nanowire arrays on silicon substrates, and dark-field optical microscopy to investigate their localized surface plasmon resonance characteristics. For an obtained gold nanodot array, the average diameter is around 50 nm after thermal treatment. For the gold nanowire arrays, the thickness is 15 □ 20 nm and the widths are ranging between 50 and 100 nm. The scattering spectra are composed of two resonance peaks in the blue and the red regions. It is also found that when the width is increased, the red peak experiences a red shift, whereas the blue peak remains unchanged. It is clear that the two peaks can be attributed to resonances along the thickness and width directions of the nanowires. Furthermore, 1-Dodecanethiol, 1-Octadecanethiol, and 16-Mercaptohexadecanoic acid are chosen to perform gold nanowire surface modification respectively; the result indicates the sensitivity of gold nanowires to local dielectric environment change.
Reference
1. R. P. Van Duyne, Science 306, 985 (2004)
2. W. Knoll, Annu. Rev. Phys. Chem. 49, 569 (1998)
3. J. M. Brockman, B. P. Nelson, and R. M. Corn, Annu. Rev. Phys. Chem. 51, 41 (2000)
4. R. M. Sutherland and C. Dähne, Biosensors: Fundamentals and Applications, Oxford Univ. Press, Oxford, U. K. (1987)
5. J. Homola, Anal. Bioanal. Chem. 377, 528 (2003)
6. R. L. Rich and D. G. Myszka, Drug Discov. Today: Technologies 1, 301 (2004)
7. A. J. Haes and R. P. Van Duyne, Anal Bioanal Chem 379, 920 (2004)
8. S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, Proc. Natl. Acad. Sci. U. S. A. 97, 996 (2000)
9. D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, Cancer Lett. 209, 171 (2004)
10. Y. Huang, X. Duan, and C. M. Lieber, Small 1, 142 (2005)
11. E. Ozbay, Science 311, 189 (2006)
12. C. J. Orendorff, T. K. Sau, and C. J. Murphy, Small 2, 636 (2006).
13. S. Link and M. A. El-Sayed, Annu. Rev. Phys. Chem. 54, 331 (2003)
14. P. Zhang and T. K. Sham, Appl. Phys. Lett. 82, 1778 (2003)
15. M. D. Austin, H. X. Ge, W. Wu, M. T. Li, Z. N. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, Appl. Phys. Lett. 84, 5299 (2004)
16. B. D. Gates, G. M. Whitesides, J. Am. Chem. Soc. 125, 14986 (2003)
17. W. Rechberger, A. Hohenau, A. Leitner, J.R. Krenn, B. Lamprecht, and F.R. Aussenegg, Opt. Commun. 220, 137 (2003).
18. A. J. Haes, D. A. Stuart, S. Nie, and R. P. Van Duyne, J. Fluoresc. 14, 355 (2004)
19. L. L. Sohn and R. L. Willet, Appl. Phys. Lett. 67, 1552 (1995)
20. S. Hu, A. Hamidi, S. Altmeyer, T. Köster, B. Spangenberg, and H. Kurz, J. Vac. Sci. Technol. B 16, 2822 (1998)
21. V. Bouchiat and D. Esteve, Appl. Phys. Lett. 69, 3098 (1996)
22. L. Santinacci, T. Djenizian, and P. Schmuki, Appl. Phys. Lett. 79, 1882 (2001)
23. L. A. Porter, A. E. Ribbe, and J. M. Buriak, Nano. Lett. 3, 1043 (2003)
24. J.-H. Hsu, C.-Y Lin, and H.-N Lin, J. Vac. Sci. Technol. B 22, 2768 (2004)
25. Y.-J. Chen, J.-H. Hsu, and H.-N Lin, Nanotechnology 16, 1112 (2005)
26. C. F. Bohren and D. R. Huffman, Absorption and Scattering of light by small particles, Wiley-VCH, New York (1983)
27. H. C. Van de Hulst, Light scattering by small particles, Dover Publications, New York (1981)
28. S. Link and M. A. El-Sayed, J. Phys. Chem. B 103, 8410 (1999)
29. T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, J. Phys. Chem. B 104, 10549 (2000)
30. M. A. El-Sayed, Acc. Chem. Res. 34, 257 (2001)
31. A. M. Michaels, M. Nirmal, and L. E. Brus, J. Am. Chem. Soc. 121, 9932 (1999)
32. G. C. Schatz and R. P. Van Duyne, Electromagnetic Mechanism of Surface-Enhanced Spectroscopy 1,Wiley, New York, (2002)
33. C. L. Haynes, A. D. McFarland, M. T. Smith, J. C. Hulteen, and R. P. Van Duyne, J. Phys. Chem. B 106, 1898 (2002)
34. J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, J. Chem. Phys. 116, 6755 (2002)
35. K. L. Kelly, E. Coronado, L. Zhao, and G. C. Schatz. J. Phys. Chem. B 107, 668 (2003)
36. A. D. McFarland, and R. P. Van Duyne, Nano Lett. 3, 1057 (2003)
37. A. J. Haes, C. L. Haynes, A. D. McFarland, S. Zou, G. C. Schatz, and R. P. Van Duyne, MRS Bull. 30, 368 (2005)
38. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, Springer-Verlag, Berlin, Germany (1995)
39. S. Link and M. A. El-Sayed J. Phys. Chem. B 103, 4212 (1999)
40. U. Kreibig and U. Genzel, Surf. Sci. 156, 678 (1985)
41. S. Link and M. A. El-Sayed, Int. Rev. in Phys. Chem. 19, 409 (2000)
42. G. C. Papavassiliou, Prog. Solid State Chem. 12, 185 (1980)
43. S. Link and M. A. El-Sayed, J. Phys. Chem. B 109, 10531 (2005)
44. G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett. 49, 56 (1982)
45. G. Binnig, C. F. Quate and Ch. Gerber, Phys. Rev. Lett. 56, 930 (1986)
46. R. Wiesendanger, Scanning Probe Microscopy and Spectroscopy: Methods and Applications, Cambridge Univ. Press, New York (1994)
47. Ph. D. thesis by D. Baselt, The tip-sample interaction in atomic force microscopy and its implications for biological applications, California Institute of Technology, (1993)
48. X. N. Xie , H. J. Chung, C.H. Sow, and T.S. Wee, Materials Science and Engineering R. 54, 1 (2006)
49. M. W. Davidson and M. Abramowitz, Optical Microscopy, Olympus America, Inc.
50. D. R. Lide, CRC Handbook of Chemistry and Physics, 87th ed., CRC Press: Boca Raton (2006)
51. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4371 (1972)