研究生: |
江明叡 Jiang, Ming-Ruei |
---|---|
論文名稱: |
根基於新穎主體材料之高效橘紅光有機發光二極體 High Efficacy Orange-red Organic Light Emitting Diode Based on Novel Host material |
指導教授: |
周卓煇
JOU, JWO-HUEI |
口試委員: |
岑尚仁
王欽戊 薛景中 蔡永誠 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2019 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 110 |
中文關鍵詞: | 有機發光二極體 、共主體 、橘紅光 、磷光 |
外文關鍵詞: | OLED, Co-host, Orange-red, phosphorescent |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有機發光二極體 (Organic Light Emitting Diode, OLED) 是當今最受注目的平面顯示技術,應用在手機及電視等產品上,具有廣視角、高對比、高反應速率、可低溫操作等優點;而其節能、散熱快、光綫柔和等特性,具有角逐最佳照明技術的潛力;此外,可製作在柔性撓曲式電子基板的優勢,更增加OLED多元應用的可能性。
本研究使用一新穎主體材料 9,9’-[oxetane-3,3-diylbis(methylene)]bis[3-(2-methoxypyridin-3-yl)-9H-carbazole)] [DB6] 與磷光橘紅光染料 Tris(2-phenylquinoline)iridium(III) [Ir(2-phq)3] 製作高效橘紅光OLED,在亮度 100 cd/m2 時,元件的能量效率及電流效率分別是20.5 lm/W及21.9 cd/A,在亮度 1,000 cd/m2 時,元件的能量效率及電流效率分別是16.4 lm/W及22.1 cd/A。
使用材料DB6的高效率可歸因於:一、DB6有效的分散激子再結合區域,避免激子集中產生淬熄,二、主體材料DB6與客體材料Ir(2-phq)3具有良好的能量轉移。
進一步使用4,4’,4’’-Tris[phenyl(m-tolyl)amino]triphenylamine [m-MTDATA] 作為共主體添加,製備另一高效橘紅光OLED,在亮度 100 cd/m2 時,其能量效率及電流效率提升至 31.2 lm/W及 30.3 cd/A,提升幅度分別為 52% 及 38%,在亮度 1,000 cd/m2 時,其能量效率及電流效率提升至 16.8 lm/W及 23.7 cd/A,提升幅度分別為 2.4% 及 7.2%。
此共主體添加大幅改善了效率,可歸因於共主體m-MTDATA具有較電洞傳輸層淺的HOMO,使得電洞得以有效注入,降低元件操作電壓,進而提升效率。
Organic Light Emitting Diode (OLED) is nowadays the most popular flat-panel display technology used in mobile phones and TVs. It has several advantages such as wide viewing-angle, high contrast, fast response, and capability of low temperature operation. Furthermore, the properties of OLED like energy saving, fast heat dissipation, and soft light make it candidate to become best optimal lighting technology. In addition, OLED devices can be fabricated on flexible electronic substrates, which improves the possibility of OLED multi-applications.
This study used a novel host material 9,9'-[oxetane-3,3-diylbis(methylene)]bis[3-(2-methoxypyridin-3-yl)-9H-carbazole)] [DB6] and phosphorescent orange-red dyes Tris(2-phenylquinoline)iridium(III) [Ir(2-phq)3] to produce high-efficiency orange-red OLEDs. The power efficacy is 20.5 lm/W and the current efficacy is 21.9 cd/A at 100 cd/m2. The power efficacy is 16.4 lm/W and the current efficacy is 22.1 cd/A at 1,000 cd/m2.
The high efficacy can be ascribed to high efficiency energy transfer from DB6 to Ir(2-phq)3 and the effective dispersion of excitions which avoid quenching.
When 4,4',4''-Tris[phenyl(m-tolyl)amino]triphenylamine [m-MTDATA] was used as a co-host to prepare another high-efficiency orange-red OLED. The power efficacy is 31.2 lm/W and the current efficacy is 30.3 cd/A at 100 cd/m2, which are 52% and 38% higher than the device without the co-host respectively. The power efficacy is 16.8 lm/W and the current efficacy is 23.7 cd/A at 1,000 cd/m2, which are 2.4% and 7.2% higher than the device without the co-host respectively.
The great efficacy improvement can be ascribed to the co-host. It has a higher HOMO which provides effective hole injection that decreases the operating voltage and increases the power efficacy.
[1] J. Kido, M. Kimura and K. Nagai, Science, 1995, 267, 1332-1334.
[2] O. Prache, Displays, 2001, 22, 49-56.
[3] J. Y. Lee, J. H. Kwon and H. K. Chung, Organic Electronics, 2003, 4, 143-148.
[4] S. R. Forrest, Nature, 2004, 428, 911.
[5] A. R. Duggal, J. Shiang, C. M. Heller and D. F. Foust, Appl. Phys. Lett, 2002, 80, 3470.
[6] B. W. D’Andrade, R. J. Holmes and S. R. Forrest, Adv. Mater., 2004, 16, 624.
[7] H. Lim, W. J. Cho, C. S. Ha, S. Ando, Y. K. Kim, C. H. Park and K. Lee, Adv. Mater., 2002, 14, 1275.
[8] J. Lewis, S. Grego, B. Chalamala, E. Vick and D. Temple, Appl. Phys. Lett, 2004, 85, 3450-3452.
[9] International Commission on Non-Ionizing Radiation Protection, Health Phys, 1997, 73, 539-554.
[10] Available:
https://www.autoblog.com/2017/02/28/bmw-x4-toyota-tacoma-gauge-illumination/
[11] Hamzavi I, Lui H, Dermatol Clin, 2005, 23, 199-207.
[12] Narurkar VA, Semin Cutan Med Surg, 2006, 25, 145-150.
[13] A. Bernanose, M. Conet and P. Vouauzx, J. Chim. Phys. PCB., 50, 64-68 (1953)
[14] M. Pope, P. Magnante and H. P. Kallmann, J. Chem. Phys., 38, 2042-2043 (1963)
[15] W. Helfrich and W. G. Schneide, Phys. Rev. Lett., 14, 229-231 (1965)
[16] W. Helfrich and W. G. Schneide, J. Chem. Phys., 44, 2902-2909 (1966)
[17] P. S. Vincett, W. A. Barlow, R. A. Hann and G. G. Roberts, Thin Solid Films, 94, 171-183 (1982)
[18] R. H. Partridge, Polymer, 24, 733-738 (1983)
[19] C. W. Tang and S. A. Vanslyke, Appl. Phys. Lett., 51, 913-915 (1987)
[20] S. A. Vanslyke, C. W. Tang and L. C. Robert, US Patent., No. 4720432 (1988)
[21] C. W. Tang, S. A. Vanslyke and C. H. Chen, J. Appl. Phys., 65, 3610-3616 (1989)
[22] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature, 347, 539-541 (1990)
[23] R. H. Friend, J. H. Burroughes, and D. D. Bradley, US. Patent, No. 5247190 (1993)
[24] C. Adachi, S. Tokito, T. Tsutsui and S. Saito, Jpn. J. Appl. Phys., 27, L713-L715 (1988)
[25] M. Era, C. Adachi, T. Tsutsui, and S. Saito, Chem. Phys. Lett., 178, 488-490 (1991)
[26] J. Kido, K. Honggawa, K. Okuyama and K. Nagai, Appl. Phys. Lett., 64, 815-817 (1994)
[27] J. Kido, M. Kimura and K. Nagai, Science, 267, 1332-1334 (1995)
[28] L. S. Hung, C. W. Tang and M. G. Mason, Appl. Phys. Lett., 70, 152-154 (1997)
[29] G. E. Jabbour, B. Kippelen, N. R. Armstrong and N. Peyghambarian, Appl. Phys. Lett., 73, 1185-1187 (1998)
[30] J. Kido and T. Mazukami, US. Patent, No. 6013384 (2000)
[31] M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson and S. R. Forrest, Nature, 395, 151-154 (1998)
[32] C. Adachi, M. A. Baldo, M. E. Thompson and S. R. Forrest, J. Appl. Phys., 90, 5048-5051 (2001)
[33] J. Blochwitz, M. Pfeiffer, T. Fritz and K. Leo, Appl. Phys. Lett, 1998, 73, 729-731.
[34] J. Kido and T. Matsumoto, Appl. Phys. Lett., 73, 2866-2868 (1998)
[35] J. S. Huang, M. Pfeiffer, A. Warner, J. Blochwitz, K. Leo and S. Y. Liu, Appl. Phys. Lett., 80, 139-141 (2002)
[36] Y. Shao and Y. Yang, Appl. Phys. Lett., 85, 073510 (2005)
[37] J. H. Jou, Y. S. Chiu, C. P. Wang, R. Y. Wang and C. Hu, Appl. Phys. Lett., 88, 193501 (2006)
[38] Y. Sun and S. R. Forrest, Nat. Photonics, 2, 483-487 (2008)
[39] S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem and K. Leo, Nature, 459, 234-238 (2009)
[40] Z. B. Wang, M. G. Helander, J. Qiu, D. P. Puzzo, M. T. Greiner, Z. M. Hudson, S. Wang, Z. W. Liu and Z. H. Lu, Nat. Photonics, 5, 753-757 (2011)
[41] T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn and T. W. Lee, Nat. Photonics, 6, 105-110 (2012)
[42] J. H. Jou, C. Y. Hsieh, J. R. Tseng, S. H. Peng, Y. C. Jou, J. H. Hong, S. M. Shen, M. C. Tang, P. C. Chen and C. H. Lin, Adv. Funct. Mater., 23, 2750-2757 (2013)
[43] H. Uoyama, K. Goushi, K. Shizu, H. Nomura and C. Adachi, Nature, 492, 234-238 (2012)
[44] A. Dodabalapur, Solid State Commun., 102, 259-267 (1997)
[45] W. D. Gill, J. Appl. Phys., 43, 5033-5040 (1972)
[46] U. Wolf, V. I. Arkhipov and H. Bassler, Phys. Rev. B, 59, 7507-7513 (1999)
[47] S. Barth, U. Wolf, H. Bassler, P. Muller, H. Riel, H. Vestweber, P. E. Seidler and W. Riess, Phys. Rev. B, 60, 8791-8797 (1999)
[48] M. A. Lampert and P. Mark, New York, Academic Press (1970)
[49] P. N. Murgatro, J. Phys. D: Appl. Phys., 3, 151-156 (1970)
[50] M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson and S. R. Forrest, Nature, 395, 151-154 (1998)
[51] L. G. Thompson and S. E. Webber, J. Phys. Chem., 76, 221 (1972)
[52] T. Förster, Ann. Physik, 437, 55-75 (1948)
[53] L. Dexter, J. Chem. Phys., 21, 836-850 (1953)
[54] M. Klessonger and J. Michl, “Excited Stated and Photochemistry of Organic Molecules”, VCH Publishers, New York (1995)
[55] C. I. d. L. e. (CIE), Publication Report No. 15.2, Colorimetry (1986)
[56] J. H. Jou, Y. S. Wang, C. H. Lin, S. M. Shen, P. C. Chen, M. C. Tang, Y. Wei, F. Y. Tsai, C. T. Chen, J. Mater. Chem., 21, 12613-12618 (2011)
[57] J. Yang and J. Shen, J. Appl. Phys., 84, 2105-2111 (1998)
[58] Z. Liu, J. Pinto, J. Soares and E. Pereira, Synthetic Met., 122, 177-179 (2001)
[59] M. G. Mason, L. S. Hung, C. W. Tang, S. T. Lee, K. W. Wong and M. Wang, J. Appl. Phys., 86, 1688-1692 (1999)
[60] K. Sugiyama, H. Ishii, Y. Ouchi and K. Seki, J. Appl. Phys., 87, 295-298 (2000)
[61] S. A. VanSlyke, C. H. Chen and C. W. Tang, Appl. Phys. Lett., 69, 2160-2162 (1996)
[62] G. Sakamoto, C. Adachi, T. Koyama, Y. Taniguchi, C. D. Merritt, H. Murata and Z. H. Kafafi, Appl. Phys. Lett., 75, 766-768 (1999)
[63] C. Giebeler, H. Antoniadis, D. D. C. Bradley and Y. Shirota, J. Appl. Phys., 85, 608-615 (1999)
[64] J. Lee, N. Chopra, S. H. Eom, Y. Zheng, J. G. Xue, F. So and J. M. Shi, Appl. Phys. Lett., 93, 123306 (2008)
[65] J. Shi, C. W. Tang and C. H. Chen, US. Patent, No. 5646948 (1997)
[66] T. Wakimoto, Y. Fukuda, K. Nagayama, A. Yokoi, H. Nakada and M. Tsuchida, IEEE T. Electron Dev., 44, 1245-1248 (1997)
[67] C. Ganzorig, K. Suga and M. Fujihira, Mat. Sci. Eng. B-Solid, 85, 140-143 (2001)
[68] T. Brown, R. Friend, I. Millard, D. Lacey, T. Butler, J. Burroughes and F. Cacialli, J. Appl. Phys., 93, 6159-6172 (2003)
[69] A. Elschner, F. Bruder, H. W. Heuer, F. Jonas, A. Karbach, S. Kirchmeyer and S. Thurm, Synthetic Met., 111, 139-143 (2000)
[70] L. S. Hung, Thin Solid Films, 363, 47-50 (2000)
[71] G. Wald and P. K. Brown, Science, 127, 222-226 (1958)
[72] E. Wald, Science, 145, 1007-1017 (1964)
[73] C. L. Ho, W. Y. Wong, Q. Wang, D. Ma, L. Wang and Z. Lin, Adv. Funct. Mater., 18, 928-937 (2008)
[74] Jwo-Huei Jou, Shih-Ming Shen, Szu-Hao Chen, Ming-Hsuan Wu, Wei-Ben Wang, Hsi-Ching Wang, Chuen-Ren Lin, Yi-Chieh Chou, Po-Hsien Wu, and Jing-Jong Shyue, Apply. Phys. Lett, 96, 143306 (2010)
[75] Jwo-Huei Jou, Po-Hsien Wu, Chun-Hao Lin, Ming-Hsuan Wu, Yi-Chieh Chou, Hsi-Ching Wang, and Shih-Ming Shen, J. Mater. Chem., 20, 8464-8466 (2010)
[76] R. Wang, D. Liu, H. Ren, T. Zhang, H. Yin, G. Liu and J. Li, Adv. Mater., 25, 2771-2876 (2011)
[77] J. Ye, C. J. Zheng, X. M. Ou, X. H. Zhang, M. K. Fung and C. S. Lee, Adv. Mater., 24, 3410-3414 (2012)
[78] B. Zhang, G. Tan, C. S. Lam, B. Yao, C. L. Ho, L. Liu, Z. Xie, W. Y. Wong, J. Ding and L. Wang, Adv. Mater., 24,1873-1877 (2012)
[79] J. Ding, B. Zhang, J. Lü, Z. Xie, L. Wang, X. Jing and F. Wang, Adv. Mater., 21, 4983-4986 (2009)
[80] J. Li, T. Nakagawa, J. MacDonald, Q. Zhang, H. Nomura, H. Miyazaki and C. Adachi, Adv. Mater., 25, 3319-3323 (2013)
[81] S. Lee, H. Shin and J. J. Kim, Adv. Mater., 26, 5864-5868 (2014)
[82] H. Wang, L. Meng, X. Shen, X. Wei, X. Zheng, X. Lv, Y. Yi, Y. Wang and P. Wang, Adv. Mater., 27, 4041-4047 (2015)
[83] B. Zhao, T. Zhang, B. Chu, W. Li, Z. Su, Y. Luo, R. Li, X. Yan, F. Jin, Y. Gao and H. Wu, Organic Electronics, 17, 15-21 (2015)
[84] B. Zhao, Y. Miao, Z. Wang, W. Chen, K. Wang, H. Wang, Y. Hao, B. Xu and W. Li, Organic Electronics, 37, 1-5 (2016)
[85] B. Liu, J. Zhao, C. Luo, F. Lu, S. Tao and Q. Tong, J. Mater. Chem. C, 4, 2003-2010 (2016)
[86] L. Yu, Z. Wu, G. Xie, C. Zhong, Z. Zhu, H. Cong, D. Ma and C. Yang, Chem. Commun., 52, 11012 (2016)
[87] L. Yu, Z. Wu, G. Xie, C. Zhong, Z. Zhu, D. Ma and C. Yang, Chem. Commun., 54, 1379 (2018)
[88] R. Furue, K. Matsuo, Y. Ashikari, H. Ooka, N. Amanokura and T. Yasuda, Adv. Optical Mater., 6, 1701147 (2018)
[89] W. Zeng, H. Y. Lai, W. K. Lee, M. Jiao, Y. J. Shiu, C. Zhong, S. Gong, T. Zhou, G. Xie, M. Sarma, K. T. Wong, C. C. Wu and C. Yang, Adv. Mater., 30, 1704961 (2018)
[90] Y. Liu, M. S. Liu, A. K.-Y. Jen, Acta Polym., 50, 105 (1999)
[91] P. W. M. Blom, M. J. M. de Jong, and J. J. M. Vleggaar, Apply. Phys. Lett. 68, 3308 (1996)
[92] Peisen Yuan, Xianfeng Qiao, Donghang Yan and Dongge Ma, J. Mater. Chem. C, 6, 5721-5726 (2018)
[93] Liping Zhu, Kai Xu, Yanping Wang, Jiangshan Chen and Dongge Ma, Front. Optoelectron., 8(4), 439-444 (2015)
[94] Joan Ràfols-Ribé, Paul-Anton Will, Christian Hänisch, Marta Gonzalez-Silveira, Simone Lenk, Javier Rodríguez-Viejo and Sebastian Reineke, Sci Adv., 4(5), 8332 (2018)
[95] J. H. Jou, C. J. Wang, Y. P. Lin, Y. C. Chung, P. H. Chiang, M. H. Wu, C. P. Wang, C. L. Lai and C. Chang, Appl. Phys. Lett, 2008, 92, 223504.
[96] Ruby Srivastava and Laxmikanth Rao Joshi, Phys. Chem. Chem. Phys, 16(32), (2014)
[97] CIE. (1926). Commission Internationale de l’Éclairage Proceedings, 1924. Cambridge: Cambridge University Press.
[98] Xiaoyang Du, Silu Tao, Yun Huang, Xiaoxia Yang, Xulin Ding and Xiaohong Zhang, Appl. Phys. Lett., 107, 183304 (2015)
[99] C. H. Chang, C. L. Ho, Y. S. Chang, I. C. Lien, C. H. Lin, Y. W. Yang, J. L. Liao, and Y. Chi, J. Mater. Chem. C, 1, 2639 (2013).
[100] S. L. Gong, Y. H. Chen, C. L. Yang, C. Zhong, J. G. Qin, and D. G. Ma, Adv. Mater., 22, 5370 (2010).
[101] E. Mondal, W. Y. Hung, H. C. Dai, and K. T. Wong, Adv. Funct. Mater., 23, 3096 (2013).
[102] J. H. Jou, C. H. Chen, J. R. Tseng, S. H. Peng, P. W. Chen, C. I. Chiang, Y. C. Jou, J. H. Hong, C. C. Wang, C. C. Chen, F. C. Tung, S. H. Chen, Y. S. Wang and C. L. Chin, J. Mater. Chem. C, 1, 394-400 (2013)
[103] Chaoyu Xiang, Wonhoe Koo, Franky So, Hisahiro Sasabe and Junji Kido, Science & Applications, 2, e74 (2013)