簡易檢索 / 詳目顯示

研究生: 洪志毅
Hung, Chih Yi
論文名稱: 智慧型仿生結構應用於軟性基板取下製程
Smart biomimetic structure applied to flexible substrate lift-off process
指導教授: 宋震國
Sung, Cheng Kuo
口試委員: 洪景華
Hung, Chinghua
黃聖杰
Hwang, Sheng Jye
林義成
Lin, Yi Cheng
江國寧
Chiang, Kuo Ning
蕭德瑛
Shaw, Dein
傅建中
Fu, Chien Chung
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 100
中文關鍵詞: 仿生結構結構形狀黏著力有限單元法LJ勢能函數JKR模型奈米壓印放電加工
外文關鍵詞: Biomimetic structure, shape of structure, Adhesive force, Finite element method, LJ potential, JKR model, Nanoimprint, Electrical discharge machining
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文針對目前產業技術的瓶頸–軟性基板從載台取下製程,作為研究方向,師法能夠在牆面上爬行的生物腳上黏著系統,發展仿生結構作為軟性基板與載台間的黏著介面。
    基於表面黏著理論與破壞力學,在商用有限單元法軟體(COMSOL)中建構兩種數值模型,分析仿生結構的黏著力、應力分布與外型效應。文中提出三種不同的仿生結構外型分別為柱狀、柱狀且邊緣有導角、蘑菇狀。為了解決數值運算時所產生的無窮值與奇異值,LJ勢能函數(Lennard-Jones potential)被使用於處理表面分子間的作用力。另外從文獻中也確認JKR模型(Johnson-Kandall-Roberts model)適用於奈米尺寸(Nano-scale)與微米尺度(Micro-scale)間的中間尺度(Meso-scale),該尺度符合本文所探討之仿生結構。其分析結果顯示結構黏著力隨著結構半徑變小而增加,並且蘑菇狀外型會有最強的黏著力;此外,也發現半漏斗狀的結構可增強結構強度,使仿生結構具有可重覆使用的特性。
    除了建構數值模型,為了實際驗證仿生結構的黏著特性,本文採用奈米壓印技術製作仿生結構。由於奈米壓印需要一個模具使材料成型,因此利用放電加工、電鍍與雷射加工製作鎳鈷合金的模具,並透過模擬確認加工所需的參數。其結果顯示放電加工可製作出高密度的通孔陣列,透過電鍍可製作複雜的結構外型,例如漏斗狀。雷射加工因有熱傳效應使得結構間距必需維持在一定的距離,且該加工方法會造成表面不平滑。因此本文採用放電加工與電鍍製作模具。
    最後使用模具在PEN表面製作仿生結構。因為PEN為熱塑性材料,熱轉印製程被使用於製作結構。透過加熱至玻璃轉換溫度以上,使材料處於熱融狀態,再施加壓力使材料填充入模具中。在填充的過程中,氣體會由通孔排出,不影響外型的轉移。降至室溫後,將模具脫離,即在PEN表面製作出仿生結構。為了確任該結構的黏著力,透過AFM探針量測測,可得知每個結構具有7 nN的黏著力。


    Flexible electronics manufacturing faces a bottleneck in lift-off process. This dissertation proposed a possible solution for the challenge by means of constructing a biomimetic structure as adhesive intermediate of carrier and substrate.
    Many insects possess evolved fibrillary structures on their feet to achieve extraordinary adhesion on vertical walls or ceilings. These fibrillary adhesive attachment systems consist of finely structured hairs with the size ranging from a few hundred nanometers to a few hundred micrometers, depending on the animal species. Learning from the fibrillary attachment systems of many insects, biomimetic structures were developed to achieve required adhesive characteristics herein.
    This research designed appropriate biomimetic structures to be used in lift-off process of flexible electronics manufacturing by finite element method and surface adhesive theorem. The geometries of biomimetic structures were pillar, pillar with rounded edge, mushroom and half-hourglass. Surface adhesive theorem was based on theory of elasticity and micro mechanics. The theorem of contact between a sphere and an elastic half-space were used to find contact area and adhesive force, and the shape effect was investigated by using JKR model and Lennard-Jones Potential. In lift-off process, tensile force and crack force between biomimetic structure and elastic substrate were calculated by Griffith condition. By varying relative peel angles, functional variables were built to estimate peeling process of adhesive structure in various conditions. The results show that the finer contact structures give rise to higher adhesion force. The mushroom-shaped tip enhances more adhesive force while the flat shape with rounded edge has the least adhesive force. The half-hourglass structure featuring a larger base can decrease the stress concentration at the bottom of the structure, so that the failure during the peeling process can be avoided.
    According to the results of simulation, the mold was made of nickel-cobalt alloy by three methods, including electrical discharge machining, electroforming and laser machining. The PEN was filled into the mold by nanoimprint and the adhesive forces of the structures were estimated by AFM.

    Abstract i 摘要 ii Acknowledgements iii Table of Contents iv List of Figures vi List of Tables ix Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Background 3 1.3 Literature Review 8 1.4 A van der Waals Force 21 1.4.1 Interaction between a Molecule and an Infinite Plane 23 1.4.2 Interaction between a Sphere and an Infinite Plane 24 1.4.3 Interaction between a Truncated Sphere and an Infinite Plane 24 1.5 Research Objectives and Organization 26 Chapter 2 Adhesion Theory 29 2.1 Adhesion Forces and Energy of Adhesion 29 2.2 JKR Model and DMT Model 31 Chapter 3 Numerical Simulation 34 3.1 Peeling condition analysis for biomimetic structure 34 3.2 Shape effect analysis for biomimetic structure 47 Chapter 4 Nanoimprinted biomimetic structure and Experimental Equipment 56 4.1 Temporarily mold fabrications 56 4.1.1 Electrical discharge machining 57 4.1.2 Electroforming 60 4.1.3 Laser machining 65 4.1.4 Brief Summary 70 4.2 Nanoimprint Lithography for biomimetic structures 71 4.2.1 Nanoimprint Lithography 71 4.2.2 Hot embossing 75 4.2.3 Adhesive force estimation 77 4.2.4 Brief Summary 80 4.3 Experimental Equipment 81 Chapter 5 Conclusions and Future Work 86 5.1 Conclusions 86 5.2 Future Work 87 Reference 90 Publication List 99

    [1] 軟性顯示器商品化,新電子科技雜誌 NO. 260。
    [2] K. Amundson, J. Ewing, P. Kazlas, R. McCarthy, J.D. Albert, R. Zehner, P. Drzaic, J. Rogers, Z. Bao, and K. Baldwin. Flexible, active-matrix display constructed using a microencapsulated electrophoretic material and an organic-semiconductor-based backplane. SID International Symposium Digest of Technical Papers 32, 160 (2001).
    [3] P. Drzaic, B. Comiskey, J.D. Albert, L. Zhang, A. Loxley, R. Feeney, and J. Jacobson. A printed and rollable bistable electronic display. SID International Symposium Digest of Technical Papers 29, 1131 (1998).
    [4] S. Tod, N. Forrest, K. Asad, J.W. Doane, and L.C. Chien. Flexible encapsulated cholesteric LCDs by polymerization induced phase separation. SID International Symposium Digest of Technical Papers 36, 1568 (2005).
    [5] C.W. Tang and S.A. VanSlyke. Organic electroluminescent diodes. Applied Physics Letters 51, 913 (1987).
    [6] Anon, 工業技術研究院, 微形變壓阻感測技術, http://www.itri.org.tw/chi/focus/focus_detail.asp?RootNodeId=010& NodeId=010&FocusNewsNBR=83. Accessed November (2010).
    [7] Anon, 工業技術研究院, 可撓式微型陣列超音波換能器技術, http://www.itri.org.tw/chi/tech-transfer/04.asp?RootNodeId=040&NodeId=041&id=3562. Accessed November (2007).
    [8] J. Kido, M. Kimura, and K. Nagai. Multilayer White light-emitting organic electroluminescent Device. Science 267, 1332 (1995).
    [9] O. Brian and G. Michael. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal Tio2 films. Nature 353, 737 (1991).
    [10] D.R. Cairns, R.P. Witte II, D.K. Sparacin, S.M. Sachsman, D.C. Paine, G.P. Crawford, and R.R. Newton. Strain-dependent electrical resistance of Tin-doped Indium Oxide on polymer substrate. Appl. Phys. Lett. 76, 1425 (2000).
    [11] B. Sim, E.H. Kim, J. Park, and M. Lee. Highly enhanced mechanical stability of indium tin oxide film with a thin Al buffer layer deposited on plastic substrate. Surface & Coatings Technology 204, 309 (2009).
    [12] A. Marmur. The lotus effect: Superhydrophobicity and Metastability. Langmuir 20, 3517 (2004).
    [13] S. Zschokke. Palaeontology: Spider-web silk from the early cretaceous. Nature, 424, 636 (2003).
    [14] H. Gao, X. Wang, H. Yao, S. Gorb, and E. Arzt. Mechanics of hierarchical adhesion structures of geckos. Mech. Master. 37, 275 (2005).
    [15] P.F.A. Maderson. Keratinized epidermal derivatives as an aid to climbing in gekkonid lizards. Nature 203, 780 (1964).
    [16] W.F. Dellit. Zur anatomie und physiologie der Geckozehe. Jena. Z. Naturw, 68613 (1934).
    [17] U. Hiller, Untersuchungen zum Feinbau und zur Funktion der Haftborsten von Reptilien. Z. Morph. Tiere, 62307 (1968).
    [18] K. Autumn, Y.A. Liang, S.T. Hsieh, W. Zesch, W.P. Chan, T.W. Kenny, R. Fearing, and R.J. Full. Adhesive force of a single gecko foot-hair. Nature 405, 681 (2000).
    [19] K. Autumn, M. Sitti, Y.A. Liang, A.M. Peattie, W.R. Hansen, S. Sponberg, T.W. Kenny, R. Fearing, J.N. Israelachvili, and R.J. Full. Evidence for van der waals adhesion in gecko setae. Proc Natl Acad Sci USA 99, 12252 (2002).
    [20] G. Huber, H. Mantz, R. Spolenak, K. Mecke, K. Jacobs, S.N. Borb,and E. Arzt. Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. PNAS 102, 16293 (2005).
    [21] W. Sun, P. Neuzil, T.S. Kustandi, S. Oh, and V.D. Samper. The nature of the gecko lizard adhesive force. Biophys J. 89, L14 (2005).
    [22] P.H. Niewiarowski, S. Lopez, L.Ge, E. Hagan, and A. Dhinojwala. Sticky gecko feet: The role of temperature and humidity. PLoS one 3, e2192 (2008).
    [23] A.K. Geim, S.V. Dubonos, I.V. Grigorieva, K.S. Novoselov, A.A. Zhukov, and S.Y. Shapoval. Microfabricated adhesive mimicking gecko foot-hair. Nat. Mater. 2, 461 (2003).
    [24] M. Jin, X. Feng, L. Feng, T. Sun, J. Zhai, T. Li, and L. Jiang. Superhydrophobic aligned polystyrene nanotube films with high adhesive force. Adv. Mater. 17, 1977 (2005).
    [25] D.S. Kim, H.S. Lee, J. Lee, S. Kim, K.H. Lee, W. Moon, and T.H. Kwon. Replication of high-aspect-ratio nanopillar array for biomimetic gecko foot-hair prototype by uv nano embossing with anodic aluminum oxide mold. Microsyst Technol 13, 601 (2007).
    [26] Y.C. Tsai, W.P. Shih, Y.M. Wang, L.S. Huang, and P.J. Shih. E-beam photoresist and carbon nanotube as biomimetic dry adhesives. 19th IEEE International Conference on Micro Electro Mechanical Systems, 926 (2006).
    [27] H.E. Jeong, S.H. Lee, P. Kim, and K.Y. Suh. Stretched polymer nanohairs by nanodrawing. Nano Lett. 6, 1508 (2006).
    [28] E.S. Yoon, R.A. Singh, H. Kong, B. Kim, D.H. Kim, H.E. Jeong, and K.Y. Suh. Tribological properties of bio-mimetic nano-patterned polymeric surfaces on silicon wafer. Tribology Letters 21, 31 (2006).
    [29] Y. Zhao, T. Tong, L. Delzeit, A. Kashani, M. Meyyappan, and A. Majumdar. Interfacial energy and strength of multiwalled-carbon-nanotube-based dry adhesive. J. Vac. Sci. Technol. B 24, 331 (2006).
    [30] B. Yurdumakan, N.R. Raravikar, P.M. Ajayan, and A. Dhinojwala. Synthetic gecko foot-hairs from multiwalled carbon nanotubes. Chem. Commun. 30, 3799 (2005).
    [31] L. Ge, S. Sethi, L. Ci, P.M. Ajayan, and A. Dhinojwala. Carbon nanotube-based synthetic gecko tapes. PNAS 104, 10792 (2007).
    [32] C. Majidi, R.E. Groff, Y. Maeno, B. Schubert, S. Baek, B. Bush, R. Maboudian, N. Gravish, M. Wilkinson, K. Autumn, and R.S. Fearing. High friction from a stiff polymer using microfiber arrays. Phys. Rev. Lett. 97, 4 (2006).
    [33] C.S. Majidi, R.E. Groff, and R.S. Fearing. Attachment of fiber array adhesive through side contact. J. Appl. Phys. 98, 103521 (2005).
    [34] J. Lee, C. Majidi, B. Schubert, and R.S. Fearing. Sliding-induces adhesion of stiff polymer microfiber arrays. i. macroscale behavior. Journal of The Royal Society Interface 5, 835 (2008).
    [35] M.T. Northen and K.L. Turner. Meso-scale adhesion testing of integrated micro- and nano-scale structures. Sensors and Actuators A: Physical 130-131, 583 (2006).
    [36] M.P. Murphy, S. Kim, and M. Sitti. Enhanced adhesion by gecko-inspired hierarchical fibrillar adhesives. ACS Applied Materials & Interfaces 1, 849 (2009).
    [37] H.E. Jeong, J.K. Lee, H.N. Kim, S.H. Moon, and K.Y. Suh. A nontransferring dry adhesive with hierarchical polymer nanohairs. PNAS 106, 5639 (2009).
    [38] J. Lee, B. Bush, R. Maboudian, and R.S. Fearing. Gecko-inspired combined lamellar and nanofibrillar array for adhesion on nonplanar surface. Langmuir 25, 12449 (2009).
    [39] Z. Dai, M. Yu, and S. Gorb. Adhesion characteristics of polyurethane for bionic hairy foot. Journal of Intelligent Material Systems and Structures 17, 737 (2006).
    [40] D. Santos, M. Spenko, A. Parness, S. Kim, and M. Cutkosky. Directional adhesion for climbing: theoretical and practical considerations. Journal of Adhesion Science and Technology 21, 1317 (2007).
    [41] S. Kim, M. Spenko, S. Trujillo, B. Heyneman, V. Mattoli, and M.R. Cutkosky. Whole body adhesion: hierarchical, directional and distributed control of adhesive forces for a climbing robot. IEEE International Conference on Robotics and Automation, 1268 (2007).
    [42] S. Kim, M. Spenko, S. Trujillo, B. Heyneman, D. Santos, and M.R. Cutkosky. Smooth vertical surface climbing with directional adhesion. IEEE Transactions on Robotics 24, 65 (2008).
    [43] S. Gorb, M. Varenberg, A. Peressadko, and J. Tuma. Biomimetic mushroom-shaped fibrillar adhesive microstructure. Journal of The royal Socity Interface 4, 271 (2006).
    [44] A. del Campo, C. Greiner, and E. Arzt. Contact shape controls adhesion of bioinspired fibrillar surfaces. Langmuir 23, 10235 (2007).
    [45] S. Kim and M. Sitti. Biologically inspired polymer microfibers with spatulate tips as repeatable fibrillar adhesives. Appl. Phys. Lett. 89, 261911 (2006).
    [46] M.P. Murphy, B. Aksak, and M. Sitti. Gecko-Inspired directional and controllable adhesion. Small 5, 170 (2008).
    [47] H. Hertz. Über die Berührung fester elastischer Körper. J. Reine & Angew. Math. 92, 156 (1882).
    [48] L.A. Girifalco and R.J. Good. A theory for the estimation of surface and interfacial energies. I. Derivation and application to interfacial tension. The Journal of Physical Chemistry 61, 904 (1957).
    [49] F.M. Fowkes. Additivity of intermolecular forces at interfaces. i. determination of the contribution to surface and interfacial tensions of dispersion forces in various liquids1. The Journal of Physical Chemistry 67, 2538 (1963).
    [50] A.A. Griffith. Phenomena of rupture and flow in solids, Phil. Trans. Roy. Soc. (London) 221 A, 163 (1920).
    [51] R.S. Bradley. The Cohesive force between solid surfaces and the surface energy of Solids, Phil. Mag. 13, 853 (1932).
    [52] K.L. Johnson, K. Kendall, and A.D. Roberts. Surface energy and the contact of elastic body, Proc. R. Soc. Lond. A. 324, 301 (1971).
    [53] B.V. Derjaguin, V.M. Muller, and Y.P. Toporov. Effect of Contact Deformations on the Adhesion of Particles. J. Colloid Interface Sci. 53, 314 (1975).
    [54] D. Maugis. Adhesion of spheres: The JKR-DMT transition using a Dugdale model, J. Colloid Interface Sci. 150, 243 (1992).
    [55] K.L. Johnson. Adhesion and friction between a smooth elastic spherical asperity and a plane surface”, Proc. R. Soc. Lond. A. 453, 163 (1997).
    [56] K.S. Kim, R.M. McMeeking and K.L. Johnson. Adhesion, slip, cohesive zones and energy fluxes for elastic spheres in contact, J. Mech. Phys. Solids 46, 243 (1998).
    [57] G. Haiat, M.C.P. Huy, and E. Barthel. The adhesive contact of viscoelastic spheres, J. Mech. Phys. Solids 51, 69 (2003).
    [58] Y. Fang and X. Tan. A dynamic JKR model with application to vibrational release in micromanipulation, Proceedings of the IEEE/RSJ. 1341 (2006).
    [59] S. Alvo, P. Lambert, M. Gauthier, and S. Regnier. A van der Waals force-based adhesion model for micromanipulation, J. adhes. Sci. technol. 24, 2415 (2010).
    [60] S. Alvo, J. Dejeu, B. Tamadazte, P. Rougeot, and S. Regnier. Analysis and specificities of adhesive forces between microscale and nanoscale, IEEE T. Autom. Sci. Eng. 10, 562 (2013).
    [61] C.J. Van Oss. Interfacial Forces in Aqueous Media, Dekker, New York (1994).
    [62] J. Yu, S. Chary, S. Das, J. Tamelier, N.S. Pesika, K.L. Turner, and J.N. Israelachvili. Gecko-Inspired Dry Adhesive for Robotic Applications, Adv. Funct. Mater. 21, 3010 (2011).
    [63] C. Greiner, Nanotechnologies for the Life Sciences, Wiley-VCH Verlag GmbH & Co. KGaA, 1 (2012).
    [64] Y. Menguc and M. Sitti. In Polymer Adhesion, Friction, and Lubrication, Wiley, 351 (2013).
    [65] A. Pattantyus-Abraham, J. Krahn, and C. Menon. Recent advances in nanostructured biomimetic dry adhesives, Front. Bioeng. Biotechnol. 1, 1 (2013).
    [66] D. Santos, M. Spenko, A. Parness, S. Kim, and M. Cutkosky. Directional adhesion for climbing: theoretical and practical considerations, J. Adhes. Sci. Technol. 21, 1317 (2007).
    [67] A.R. Savkoor and G.A.D. Briggs. The effect of tangential force on the contact of elastic solids in adhesion, Proc. R. Soc. A356, 103 (1977).
    [68] A.M. Homola, J.N. Israelachvili, P.M. McGuiggan, and M.L. Gee. Fundamental studies in tribology: The transition from “interfacial” function of undamaged molecularly smooth surfaces to “normal” friction with wear, Wear 136, 65 (1990).
    [69] D. Sarid. Scanning force microscopy: with applications to electric, magnetic and atomic forces, Scanning 14, 118 (1991).
    [70] H. Gao and H. Yao. Shape insensitive optimal adhesion of nanoscale fibrillar structures, Proc. Natl Acad. Sci. USA 101, 7851 (2004).
    [71] J.F. Waters, S. Lee, and P.R. Guduru. Mechanics of Axisymmetric Wavy Surface Adhesion: JKR-DMT Transition Solution, Int. J. Solids Struct. 46, 1033 (2009).
    [72] G.G. Adams. Adhesion and pull-off force of an elastic indenter from an elastic half-space, Proc. R. Soc. A 470, 20140317 (2014).
    [73] Y.R. Jeng and C.P. Mao. The effect of contaminants on the adhesion of the spatula of a gecko. J. Biosci. 35, 595 (2010).
    [74] G. Carbone and E. Pierro. Sticky bio-inspired micropillars: finging the best shape, Small 8, 1449 (2012).
    [75] Y. Takeuchi, K. Sawada, and T. Sata. Ultraprecision 3D micromachining of glass, Annals of CIRP. 45, 401 (1996).
    [76] T. Moriwaki and K. Okuda. Machinability of copper in ultra-precision micro diamond cutting, Annals of CIRP. 38, 115 (1989).
    [77] T. Masuzawa, M. Yamamoto, and M. Fujino. A micro punching system using wire-EDG and EDM, Proc. of ISEM IX., 86 (1989).
    [78] T. Masuzawa, J. Tsukamoto, and M. Fujino, Drilling of deep microholes by EDM, Annals of CIRP. 38, 195 (1989).
    [79] T. Masuzawa, M. Fujino, K. Kobayashi, and T. Suzuki, Wire electro-discharge grinding for micromachining, Annals of the CIRP. 34, 431 (1985).
    [80] H.K. Tonshoff, D. Hesse, and J. Mommsen, Micromachining using excimer lasers, Annals of the CIRP. 42, 247 (1993).
    [81] P. Vanýsek. Electrochemical series, handbook of chemistry and physics, Chemical rubber company, 90th edition (2009).
    [82] W.D. Callister and D.G. Rethwisch. Materials science and engineering:An introduction, 8th Edition (2009).
    [83] Y.C. Stephen, R.K. Peter, and J.R. Preston. Imprint of sub-25 nm vias and trenches in polymers, Applied Physics Letters 67, 3114 (1995).
    [84] S.Y. Chou, P.R. Krauss, W. Zhang, L. Guo, and L. Zhuang. Sub-10 nm imprint lithography and applications, Journal of vacuum Science and Technology B 15, 2897 (1997).
    [85] H. Tan, A. Gilbertson and S. Y. Chou, Roller nanoimprint lithography, Journal of vacuum Science and Technology B 16, 3926 (1998).
    [86] http://www.molecularimprints.com/Technology/technology2.html accessed on 22nd , Dec. (2005).
    [87] S. Y. Chou, C. Keimel and J. Gu, Ultrafast and direct imprint of nanostructures in silicon, Nature 417, 835 (2002).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE