簡易檢索 / 詳目顯示

研究生: 林雅婷
Lin, Ya-Ting
論文名稱: Cobalt-assisted Medium Ring Cyclization for Solanoeclepin A and Taxoid Synthesis
指導教授: 磯部稔
Minoru, Isobe
汪炳鈞
Uang, Biing-Jiun
口試委員: 廖俊臣
Liao, Chun-Chen
洪上程
Hung, Shang-Cheng
葉明倉
Yeh, Ming-Chang
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 262
中文關鍵詞: 紫杉醇八羰基二鈷尼古拉斯反應細見-櫻井反應普林斯羰基-烯反應
外文關鍵詞: Taxol, dicobalt hexacarbonyl, Nicholas reaction, Hosomi-Sakurai reaction, Prins-Carbonyl-ene reaction
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 紫杉醇 Taxol 1和天然物 Solanoeclepin A 148的多碳骨架建構方法在最近十幾年受到有機化學加的關注. 紫杉醇 Taxol 1 及其衍生物 2, 3與4唯有潛力的抗腫瘤藥物; 而天然物Solanoeclepin A 148 具有刺激馬鈴薯中囊腫線蟲提早孵化的功能, 可用於農業病蟲害防治.
    本論文將著重于雙環四烯 25 的十二圓環與四環雙烯 231 的七圓環骨架之建構. 經由八羰基二鈷 Co2 (CO)8 與炔進行錯合反應後得到的前驅物 23 與217 不止彎曲成易於反應的角度與方向, 在路易士酸的催化下更可利用尼古拉斯反應, 分子內細見-櫻井反應及普林斯羰基-烯反應進行還化反應得到產物四烯25與雙烯231, 最後脫去鈷試劑即官能基轉換可得十二圓環25與七圓環149.


    The synthesis of Taxol 1 and Solanoeclepin A 148 has been attracted chemist’s attention in recent three decades, due to the challenge to construct those poly-carbocyclic sub-structures. Taxol 1 and its derivatives 2, 3, and 4 are known as the potent agents against a wide range of tumor cells. Solanoeclepin A 148, on the other hand, shows a significant hatch-stimulating activity towards the potato cyst nematodes.
    In this thesis, we have focused on the construction of twelve-membered carbocyclic substructure and seven-membered carbocyclic substructure of bicylic tetraene 25 and tetracyclic diene 231, respectively. The complexation of dicobalthexacarbonyl group played important roles not only in bending the molecule to suitable orientation to bring the moieties closer, but also using Nicholas effect and further Hosomi-Sakurai reaction and Prins-ene/halo reaction induced by Lewis acid to complete the synthesis of tetraene 25 and diene 231 frameworks.

    Contents 中文摘要.....................................................................................................I Abstract.............................................................................II Acknowledgment.................................................................III Contents............................................................................IV Abbreviations...................................................................VIII Part I Toward Macrocarbocyclic Taxoid Synthesis using Acetylene-Cobalt Method Chapter 1 Introduction and Research Motif..........................................2 1.1 General Introduction...........................................................2 1.2 Review of Synthetic Literature...............................................4 1.2.1 Nicolaou’s group –enantioselective synthesis of Taxol................4 1.2.2 Kuwajima’s group –enantioselective total synthesis of (-)-Taxol.5 1.2.3 Nakada’s group –studies on the Taxane skeleton....................6 1.3 Isobe’s group –synthesis of a diterpene taxoid skeleton..................7 1.4 Introduction of Nicholas effect...............................................8 1.5 Hosomi-Sakurai reaction......................................................9 Chapter 2 Results and Discussion....................................................10 IV 2.1 Twelve-Membered Ring cyclization following Shibuya’s Route......10 2.1.1 Synthesis of three building blocks....................................10 2.1.2 Intermolecular reaction among three building blocks..............12 2.1.3 Intramolecular Nicholas reaction induced by Lewis acid..........13 2.1.4 Removal of dicobalt hexacarbonyl group...........................16 2.2 Study on Different Position of Methyl Group ..............................18 2.2.1 Retrosynthesis .............................................................................18 2.2.2 Synthesis of three building blocks....................................19 2.2.3 Toward synthesis of precursor 50.....................................20 2.2.4 Twelve-membered ring cyclization ..................................22 2.2.5 Removal of dicobalt hexacarbonyl group............................22 2.3 Study on Cyclization with Multifunctional Groups......................24 2.3.1 Retrosynthesis .............................................................................24 2.3.2 Synthesis of cyclohexenone 82........................................25 2.3.3 Synthesis of cyclohexenone 95........................................27 2.3.4 Twelve-membered ring cyclization under basic condition.........32 2.3.5 Twelve-membered ring cyclization under acidic condition .......35 2.4 Study on Cyclization with Grubbs Metathesis..............................39 2.4.1 Retrosynthesis .............................................................................39 2.4.2 Synthesis of side chain 125.............................................40 2.4.3 Toward synthesis of precursor 122 for Grubbs metathesis.........41 V 2.5 Conclusion...................................................................46 Part II Novel Synthesis of the ABC Rings of Solanoeclepin A Chapter 3 Introduction and Research Motif......................................51 3.1 General Introduction...........................................................51 3.2 Review of Synthetic Literature..............................................52 3.2.1 Synthesis of solanoeclepin A left segment. by Hiemstra......52 3.2.2 Total synthesis of solanoeclepin A by Tanino’s group........54 3.3 Toward synthesis of Solanoeclepin A by Isobe’s group.............55 3.3.1 Synthesis of solanoeclepin A right segment by Tsao.................55 3.3.2 Synthesis of solanoeclepin A right segment by Chuang......57 3.3.3 Toward synthesis of Solanoeclepin A left segment............58 3.4 Lewis-Acid-Catalyzed Prins-Ene and Prins-Halo Reactions.............61 3.4.1 Carbonyl-ene reaction via Nicholas stabilization...................62 Chapter 4 Results and Discussion....................................................64 4.1 Synthesis of ABC rings of Solanoeclepin A.................................64 4.1.1 Retrosynthesis .............................................................................64 4.1.2 Yield improvement with FYL’s route................................ .65 4.1.3 Seven-membered ring cyclization via Lewis acid catalysis .......66 4.1.4 Removal of dicobalthexacarbonyl moiety .........................69 4.1.5 Completion of ABC rings of Solanoeclepin A ......................72 VI 4.1.6 Functional group transformation and double bond migration......77 4.1.7 Hydrosilylation route ....................................................78 4.1.8 Dihydroxylation...........................................................79 4.1.9 Oxygen-phosphine exchange ............................................80 4.2 Model Study with Gem-dimethylcyclohexnone ............................81 4.2.1 Retrosynthesis............................................................81 4.2.2 Synthesis of ketone 260 and vinyl iodide 265.......................81 4.2.3 Synthesis of seven-membered ring cyclization precursor 259.....84 4.3 Conclusion.........................................................................91 Chapter 5 Experiments and References..............................................93 5.1 General.........................................................................93 5.2 Experiment Procedure.....................................................95 5.3 References and Notes...................................................160 Appendix....................................................................................169

    References and notes
    1. National Cancer Institute: http://dtp.nci.nih.gov/timeline/flash/success_stories/S2_taxol.htm
    2. Wani, M. C.; Taylor, H. L.; Wall, M. E.; Coggen, P.; McPhail, A. T. J. Am. Chem. Soc. 1971, 93, 2325-2327.
    3. (a) Mandelkow, E.; Mundelkow, E.-M. Curr. Opin. Struct. Biol. 1994, 4, 171-179.; (b) Avila, J. Life Sci. 1991, 50, 327-334.
    4. (a) Manfredi, J. J.; Horwitz, S. B. Pharmacal. Ther. 1984, 25, 83-125.; (b) Schiff, P. B.; Fant, J.; Horwitz, S. B. Nature. 1979, 277, 665-670.
    5. Schiff, P. B.; Horwitz, S. B. Proc. Natl. Acad. Sci. USA.1980, 77, 1561-1565.
    6. (a) Lavelle, F. Curr. Opin. Invest. Drugs, 1993, 2, 627-635. Rowinsky,E. K.; (b)
    Onetto, N.; Canetta, R. M.; Arbuck, S. G. Semin. Oncol. 1992, 19, 646-662.
    7. Holmes, F. A,; Waters,R. J.; Theriault,R. I.; Forman, A. D.; Newton, L. K.; Raber, M. N.; Buzdar, A. U.; Frye, D. K.; Hortobagyi, G. N. J. Natl. Cancer Inst. USA .
    1991, 83, 1797-1805.
    8. (a) McGuire, W. P.; Rowinsky, E. K.; Rosenshein, N. B.; Grumbine, F. C.;
    Ettinger, D. S.; Armstrong, D. K.; Donehower, R. C. Ann. Intern. Med. 1989, 111, 273-279.; (b) Einzig, A. I.; Wiemik, P. H.; Sasloff, J.; Garl, S.; Runowicz, C.; O'Hanlan, K. A.; Goldberg, G. Proc. Am. Assoc. Cancer Res. 1990, 31, 187-151 (Abstract 1114).; (c) Pazdur, R.; Ho, D. H.; Lassere, Y.; Bready, B.; Kvakoff, I.
    160
    H.; Raber, M. N. Proc. Am. Soc. Clin. Oncol. 1992, 11: 111 (Abstract 265).; (d)
    Caldas, C.; McGuire, W. P., III. Semin. Oncol. 1993, 20 (4 Suppl. 3), 50.
    9. (a) Einzig, A. I.; Hochster, H.; Wiemik, P. H.; Trump, D. L.; Dutcher, J. P.; Garowski, E.; Sasloff, J.; Smith. T. J. Invest. New Drum, 1991. 9, 59.; (b) Legha, S. S.; Ring, S.; Papadopoulos, N.; Raber, M. N. Benjamin, R. Cancer 1990, 65,
    2478-2481.
    10. (a) Chang, A.; Kim, K.; Glick, J.; Anderson, T.; Karp, D.; Johnson, D. J. Natl.
    Cancer Inst. USA. 1993, 85, 384-388.; (b) Murphey, W. K.; Winn, R. J.; Fossella, F. V.; Shin, D. M.; Hynes, H. E.; Gross, H. M.; Davila, E.; Leimert, J. T.; Dhinga, H. M.; Raber, M. N.; Krakoff, I. H.; Hong, W. K. Proc. Am. Soc. Clin. Oncol. 1993, 85, 384-388.; (c) Ettinger, D. S. Semin. Oncol. 1993, 20 (4 Suppl. 3), 46.
    11. Forastiere, A. A. Semin. Oncol. 1993, 20 (4 Suppl. 3), 56.
    12. Fang, W.-S.; Fang, Q.-C.; Liang, X.-T.; Lu, Y.; Zheng, Q.-T. Tetrahedron 1995,
    51, 8483-8490.
    13. Fang, W.-S.; Fang, Q.-C.; Liang, X.-T. Planta. Med. 1996, 62, 567-569.
    14. Zamir, L. O.; Zhou, Z. H.; Caron, G.; Nedea, M. E.; Sauriol, F.; Mamer, O. J.
    Chem. Soc., Chem. Commun. 1995, 529-530.
    15. Boulanger, Y.; Khiat, A.; Zhou, Z.-H.; Caron, G.; Zamir, L. O. Tetrahedron 1996,
    52, 8957-8968.
    16. Rohr, J. Angew. Chem. Int. Ed. Engl. 1997, 36, 2190-2195. 17. Shibuya, S.; Isobe, M. Tetrahedron, 1998, 54, 6677-669.
    161
    18. (a) Nicolaou, K.; Nantermet, P. G. J. Am. Chem. Soc. 1995, 117, 624-633.; (b) Nicolaou, K. C.; Liu, J.-J. J. Am. Chem. Soc. 1995, 117, 634-644.; (c) Nicolaou, K. C.; Yang, Z. J. Am. Chem. Soc. 1995, 117, 645-652.; (d) Nicolaou, K. C.; Ueno, H. J. Am. Chem. Soc. 1995, 117, 653-659.
    19. Kuwajima, I.; Kusama, H. J. Am. Chem. Soc. 2000, 122, 3811-3820.
    20. Nakada, M.; Kawada, H. Org. Lett. 2004, 6, 4491-4494.
    21. (a) Nicholas, K. M. Acc. Chem. Res. 1987, 20, 207-214.; (b) Green, J. R. Curr.
    Org. Chem. 2001, 5, 809-826.
    22.(a) Hosomi, A.; Sakurai, H. Tetrahedron Letters 1976, 17, 1295-1298.; (b)
    Hosomi, A.; Endo, M.; Sakurai, H. Chem. Letters 1976, 9, 941-942.; (c) Hosomi, A.; Sakurai, H. J. Am. Chem. Soc. 1977, 99, 1673-1675.; (d) Hosomi, A. Acc. Chem. Res. 1988, 21, 200-206.; (e) Fleming, I.; Dunoguès, J.; Smithers, R. Org. React. 1989, 37, 57-575.; (f) Fleming, I. Comp. Org. Syn. 1991, 2, 563–593.
    23. Vinyl iodide 31 was synthesized from tosyl hydrazone 29 directly (n-BuLi, I2 / THF-TMEDA) with side- product that was difficult to separate from 31. After the mixture reacted with fragment 20, the coupling product 39 could be purified.
    24. Cymerman, J.; Heilbron, I. M.; Jones, E. R. H. J. Chem. Soc. 1945, 90-94.
    25. Smith, J. G.; Drozda, S. E.; Petraglia, S. P.; Quinn, N. R.; Rice, E. M.; Taylor, B.
    S.; Viswanathan, M. J. Org. Chem. 1984, 49, 4112-4120.
    26. (a) Still, W. C. J. Org. Chem. 1976, 41, 3063-3064.; (b) Smith, J. G.; Drozda, S.
    E.; Petraglia, S. P.; Quinn, N. R.; Rice, E. M.; Taylor, B. S.; Viswanathan, M. J. Org. Chem. 1984, 49, 4112-4120.
    162
    27. Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 4467-4470.
    28. Our laboratory reported the synthesis of 22 using different pathway. Bamba, M.;
    Nishikawa, T.; Isobe, M. Tetrahedron Lett. 1996, 37, 8199-8202.
    29. Bisacetylene 40 was treated with 1 equivalent of dicobalt octacarbonyl to give three products; both acetylenes of 40 were produced cobalt complex, one of two acetylenes of 40 was produced cobalt complex, respectively. The ratio of three
    compounds was almost 1:1:1.
    30. Liu, J. Chem. Commun. 2009, 4254–4256.
    31. Hayashi, Y. Yamaguchi, H. Organometallics, 2008, 27, 163-165.
    32. Nicholas, K. M. J. Orgnomet. Chem. 1972, 44, C21-24.
    33. Hosokawa, S.; Isobe, M. Tetrahedron Lett. 1998, 39, 1917-1920.
    34. Hosokawa, S.; Isobe, M. Synlett 1996, 351-352.
    35. Isobe, M.; Hosokawa, S.; Kira, K. Chem. Lett. 1996, 473-474.
    36. Hosokawa, S.; Isobe, M. Tetrahedron Lett. 1998, 39, 1917-1920.
    37. Isobe, M.; Hamajima, A. Chem. Lett. 2006, 35, 464-465.
    38. Cox, L. R.; Percy, J. M. Org. Lett. 2003, 5, 337-339.
    39. Isobe, M.; Kira, K. Tetrahedron 2002, 58, 6485–6492.
    40. (a) Barriault, L.; Beingessner, R. J. J. Org. Chem. 2010, 75, 6337–6346.; (b)
    Hagiwara, H.; Hamano, K. J. Org. Chem. 2005, 70, 2250-2255.
    41. Ito, Y.; Hirao, T.; Saegusa, T. J. Org. Chem. 1978, 43, 1011–1013.
    42. Majetich, G.; Condon, S. Tetrahedron Lett. 1989, 30, 1033-1036.
    163
    43. (a) Smith, III, A. B.; Victoria A. Org. Lett. 2002, 4, 783-786.; Nicolaou, K. C.; (b) Frederick, M. O. J. Am. Chem. Soc. 2008, 130, 7466–7476.
    44. Hirama, M.; Kobayashi, S. Org. Lett. 2004, 6. 751-754.
    45. Clive, D. L. J.; Paul, C. C. J. Org. Chem. 1997, 62, 7028-7032.
    46. (a) Majetich, G.; Nishidie, H. J. Chem. Soc. Perkin Trans. I. 1995, 4, 453-457.; (b)
    Marko ́,I. E.; Leroy, B. Tetrahedron Lett. 2001, 42, 8685–8688.
    47. Mukai, C.; Yamashita, H. Tetrahedron 2000, 56, 2203-2209.
    48. Basak, A.; Roy, S. K. Chem. Commun. 2006, 1646–1648.
    49. Mart ́ın, V. S.; Ortega, N. Org. Lett. 2006, 8, 871-873.
    50. (a) Grela, K.; Samojłowicz, C. Chem. Rev. 2009, 109, 3708–3742.; (b) Grubbs, R.
    H.; Vougioukalakis, G. C. Chem. Rev. 2010, 110, 1746–1787.
    51. Bai, X.; Xiang, J. J. Org. Chem. 2010, 75, 8147–8154.
    52. Simpkins, N. S.; Ahmad, N. M. J. Org. Chem. 2007, 72, 4803-4815.
    53. (a) Mulder, J. G.; Diepenhorst, P.; Bruggemann-Rotgans, I. E. M. PCT Int. Appl.
    Wo 93/02,083.; (b) Mulder, J. G.; Diepenhorst, P.; Bruggemann-Rotgans, I. E. M.
    Chem. Abstr. 1993, 118, 185844z.
    54.Schenk, H.; Driessen, R. A. J.; de Gelder, R.; Goubitz, K.; Nieboer, H.
    Bruggnmann-Rotgans, I. E. M.; Diepenhorst, P. Croat. Chem. Acta. 1999, 72,
    593-606.
    55. Isobe, M.; Tsao, K. W.; Cheng, C. Y. Org. Lett. 2012, 14, 5274-5277.
    56. (a) Benningshof, J. C. J.; Blaauw, R. H.; van Ginkel, A. E.; Rutjes, F. P. J. T.;
    Fraanje, J.; Goubitz, K.; Schenk, H.; Hiemstra, H. Chem. Commun. 2000, 164
    1465−1466.; (b) Benningshof, J. C. J.; Blaauw, R. H.; van Ginkel, A. E.; Maarseveen, J. H.; Rutjes, F. P. J. T.; Hiemstra, H. J. Chem. Soc., Perkin Trans. 1 2002, 1693−1700.; (c) Benningshof, J. C. J.; Ijsselstiijn, M.; Walner, S. R.; Koster, A. L.; Blaauw, R. H.; van Ginkel, A. E.; Briere, J.-F.; van Maarseveen, J. H.; Rutjes, F. P. J. T.; Hiemstra, H. J. Chem. Soc., Perkin Trans. 1 2002, 1, 1701−1713.
    57. Chiang, C. T. Master thesis of National Tsing Hua University, Department of Chemistry, 2011, Hsinchu, Taiwan.
    58. Mukaiyama, T.; Iwasawa, N. Chem. Lett. 1981, 29−32.
    59. Tanino, K.; Takahashi, M.; Tomato, Y.; Tokura, H.; Uehara, K.; Narabu, T.;
    Miyashita, M. Nature Chem. 2011, 3, 484-488.
    60. Chuan, H.-Y.; Isobe, M. Org. Lett. 2014, 16, 4166− 4169.
    61. Parker, K. A.; Adamchuk, M. R. Tetrahedron Lett. 1978, 19, 1689−1692.
    62. The addition of the diazophosphonate anion to the β-aldehyde 211 is rationalized
    to be slower due to steric hindrance conferred by the gem-dimethyl group and
    O-TBS, while the epimerized α-aldehyde is less hindered and reacted more readily,
    giving rise to only the α- acetylene 212.
    63. No β-acetylene isomer was found. The stereochemistry of 212-a was deduced by
    NOESY experiments on the alcohol obtained from 212 by deprotection of the THP ether (see note in SI), compared with NOESY experiments on ester 208, confirming the epimerization at the C-5.
    HOO H H3 OTBS HOO
    Me CO2Et H3 H5 H H H1' Me
    9 H9, OTBS
    Me 2 5
    208
    Me H2
    H
    212-a
    64. Nagasawa, T.; Kitamura, M.; Suzuki, K. Synlett 1995, 11, 1183-1186.
    65. Hosokawa, S. Isobe, M. Tetrahedron Lett. 1998, 39, 2609-2612.
    66. Sinder, B.B. In Comprehensive Organic Synthesis; Trost, B. M. Ed.; Pergamon:
    Oxford, 1991, 2, 527-561.
    67. Miles, B.; Davis, C. E.; Coates, R. M. J. Org. Chem. 2006, 71, 1493-1501. 68.Lin, F. Y. Master thesis of National Tsing Hua University, Department of
    Chemistry, 2013, Hsinchu, Taiwan.
    69. Aubert, C.; Begue, J. P. Chem. Lett. 1989, 1835−1838.
    70. Isobe, M.; Nishizawa, R.; Nishikawa, T.; Yoza, K. Tetrahedron Lett. 1999, 40,
    6927−6932.; (b) Kira, K.; Tanda, H.; Hamajima, A.; Baba, T.; Takai, S.; Isobe, M.
    Tetrahedron 2002, 58, 6485−6492.
    71. Rouse, M. B.; Winkler, J.-D. J. Am. Chem. Soc. 2002, 124, 9726− 9728.
    166
    72. Voight, E. A.; Seradj, H. Org. Lett. 2004, 22, 4045-4048.
    73. (a) Chodounska, H.; Pouzar, V.; Budesinsk, M. Slavkova, B.; Kohout, L. Steroids
    2004, 69, 605-612.; (b) Vakalopoulos, A.; Hoffmann, H. M. R. Org. Lett. 2000, 2,
    1447-145.
    74. Ishihara, J.; Ikuma, Y. Tetrahedron 2003, 59, 10287–10294.
    75. (a) Tamao, K.; Maeda, K. Tetrahedron Lett. 1986, 27, 65-68, 1986.; Tamao, K.;
    (b) Kumada, M. Tetrahedron Lett. 1984, 25, 321-324.
    76. Barton, D. H. R.; McCombie, S. W. J. Chem. Soc., Perkin Trans. 1 1975,
    1574-1585.
    77. (a) Robins, M. J.; Wilson, J. S. J. Am. Chem. Soc. 1981, 103, 932– 933.; (b)
    Robins, M. J.; Wilson, J. S.; Hansske, F. J. Am. Chem. Soc. 1983, 105, 4059-4065. 78. (a) Goroff, N. S.; DeCicco, R. C. Eur. J. Org. Chem. 2012, 4699-4704.; (b)
    Srikrishna, A.; Gharpure, S. J. J. Org. Chem. 2001, 66, 4379–4385.
    79. Isobe, M.; Takai, S. Synlett 2002, 4, 588–592.
    80. Kraft, P.; Weymuth, C. Eur. J. Org. Chem. 2006, 1403–1412.
    81.Kirwan, J. N.; Roberts, B. P.; Willis, C. R. Tetrahedron Lett. 1990, 31,
    5093-5096.
    82. Chatgilialoglu, C. Acc. Chem. Res. 1992, 25, 188–194.
    83. Wicha, J.; Michalak, M. J. Org. Chem. 2011, 76, 7497–7509. 84. Sicinski, R. R. J. Org. Chem. 2013, 78, 1444-1450.
    85. Saito, S.; Ishikawa, T. J. Org. Chem. 2001, 66, 8000-8009.
    86. Tsukiyama, T.; Kinoshita, A. J. Antibiotics, 2003, 56, 848-855.
    167
    87. (a) Glaser, C. Annalen der Chemie und Pharmacie, 1870, 154, 137-171. (b) Johansson S. Angew. Chem. Int. Ed. 2012, 51, 5062–5085.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE