研究生: |
李京臻 Li, Ching-Chen |
---|---|
論文名稱: |
奈米碳管-高分子複合物的熱傳導及抗菌性質研究 Thermal conductivity and antimicrobial activity of carbon nanotube-polymer composites |
指導教授: |
徐文光
Hsu, Wen-Kuang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 74 |
中文關鍵詞: | 奈米碳管 |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
According to the effective medium theory, the anisotropic fillers embedded in dielectric matrix is dominated by interfacial resistance and increase in filling fraction leads to enhanced heat transfer paths. This is a thermal diffusivity dominated mechanism. Previous study has revealed that incorporation of carbon nanotubes (CNTs) into polymers promotes effective thermal conductivity and conduction enhancement is believed arising from the formation of networked conduction paths, consistent with theory described above. This thesis uncovers the primary contribution to conduction from interfacial phonons upon CNT-polymer coupling and phonon density of states is therefore modified, thus influencing specific heat of composites and thermal conductivity. This is described in Chapter 2 and Chapter 3.
Although cytotoxicity effect of CNTs has been widely studied, the microbial effect of CNT-polymer composites however remains to be established. In this thesis, we study the Staphyococcus aureus of CNT-nylon 6 composites with or without ultraviolet (UV) radiation exposure. It is confirmed that pure nylon 6 exhibits strong antimicrobial capability under UV irradiation, whereas CNT addition stabilizes composites and antimicrobial effect is found to be suppressed. This outcome is presented in Chapter 4.
References
[1] Carbon nanotubes synthesis, structure, properties and applications, M. S.
Dressehaus, G. Dressehaus and Phaedon Avouris (Eds.), Springer press, 2001.
[2] Carbon nanotubes: A new Graphite architecture, P. M. Ajayan , Condensed Matter News, 4 ,9 ,1995.
[3] Larger-scale production of single-walled carbon nanotube by the electric-arc technique, C. Journet, W. K. Masser, P. Bernier, A. Loiseau, M. Lamy de la Chapells, S. Lefrant, P. Deniard , R. Lee, and J. E. Fischer, Nature, 388, 756, 1997.
[4] Synthesis of single- and double-walled carbon nanotube forests on conducting metal foils, T. Hiraoka, T. Yamada, D. N. Futaba, H. Kurachi, S. Uemura, M. Yumura, and S. Iijima, J. Am. Chem. Soc. 128, 13338, 2006.
[5] Application of centrifugation to the large-scale purification of electric arc-produced single-walled carbon nanotubes, A. Yu, E. Bekyarova, M. E. Itkis, D. Fakhrutdinov, R. Webster, and R. C. Haddon, J. Am. Chem. Soc. 128, 9902, 2006.
[6] The significance of plasma heating in carbon nanotube and nanofiber growth, K. B. K. Teo, D. B. Hash, R. G. Lacerda, N. L. Rupesinghe, M. S. Bell, S. H. Dalal, Deepakbose, T. R. Govindan, B. A. Cruden, M. Chhowalla, G. A. J. Amaratunga, M. Meyyappan, and W. I. Milne, Nanoletters, 4, 921, 2004.
[7] Catalytic chemical vapor deposition of single-wall carbon nanotubes at low temperature, M. Cantoro, S. Hofmann, S. Pisana, V. Scardaci, A. Parvez, C. Ducati, A. C. Ferrari, A. M. Blackburn, K. Y. Wang, and J. Robertson, Nanoletters, 6, 1107, 2006.
[8] The world of carbon nanotubes: an overview of CVD growth methologies, M. L. Terranova, V. Sessa, and M. Rossi, Chem. Vap. Depos. 12, 315, 2006.
[9] New one-dimensional conductors: graphitic microtubules, N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett. 68, 1579, 1992.
[10] Carbon nanotubes Quantum Resistors, S. Frank, P. Poncharal, Z. L. Wang, W. A.
de Heer, Science, 280, 1744, 1998.
[11] Energy gaps in “metallic” single-walled carbon nanotubes, M. Ouyang, J. L. Huang, C. L. Cheung, and C. M. Lieber, Science, 292, 702, 2001.
[12] Carbon nanotube as long ballistic conductors, C. T. White, and T. N. Todorov, Nature, 393, 240, 1998.
[13] Are fullerene tubules metallic?, J. W. Mintmire, B. I. Dunlap, C. T. White, Phys. Rev. Lett. 68, 631, 1992.
[14] The science and technology of carbon nanotubes , T. Yamabe, and K. Fukui, Elsevier Science, 1999, 1 ed.
[15] Physical properties of carbon nanotubes, R. Saito, G. Dresselhaus and M. S. Dresselhaus, Imperial college press, 1998.
[16] Elastic properties of carbon nanotubes and nanoropes, J. P. Lu, Phys. Rev. Lett. 79, 1297, 1997.
[17] Stiffness of single-walled carbon nanotubes under large strain, T. Ozaki, Y. Iwasa, T. Mitani, Phys. Rev. Lett. 84, 1712, 2000.
[18] Buckling and collapse of embedded carbon nanotubes, O. Lourie, D. M. Cox, and H. D. Wagner, Phys. Rev. Lett. 81, 1638, 1998.
[19] Elastic strain of freely suspended single-walled carbon nanotube ropes, D. A. Walters, L. M. Ericson, M. J. Casavant, J. Liu, D. T. Colbert, K. A. Smith, and R. E. Smalley, Appl. Phys. Lett. 74, 3803, 1999.
[20] Exceptionally high Young’s modulus observed for individual carbon nanotubes, M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Nature, 381, 678, 1996.
[21] Young’s modulus of single-walled nanotube, A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yanilos, and M. M. J. Treacy, Phys. Rev B, 58, 14013, 1998.
[22] Electrostatic deflections and electromechanical resonance of carbon nanotubes,
P. Poncharal, Z. L. Wang, D. Ugarte, and W. A. de Heer, Science, 283, 1513, 1999.
[23] Unusually thermal conductivity of carbon nanotubes, S. Berber, Y. K. Kwon, and D. Tomanek, Phys. Rev. Lett. 84, 4613, 2000.
[24] Measurement of the thermal conductivity of individual carbon nanotubes by the four-point three-ω method, T. Y. Choi, D. Poulikakos, J. Tharian, and U. Sennhauser, Nanoletters, 6, 1589, 2006.
[25] Carbon nanotube ballistic thermal conductance and its limits, N. Mingo, and D. A. Broido, Phys. Rev. Lett. 95, 096105, 2005.
[26] Carbon nanotube thermal transport: Ballistic to diffusive, J. Wang, and J. S. Wang, Appl. Phys. Lett. 88, 111909, 2006.
[27] Thermal conductivity of zigzag single-walled carbon nanotubes: role of the umklapp process, J. X. Cao, X. H. Yan, Y. Xiao, and J. W. Ding, Phys. Rev. B, 69, 073407, 2004.
[28] Measuring the thermal conductivity of a single carbon nanotube, M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T. Ikuta, H. Abe, and T. Shimizu, Phys. Rev. Lett. 95, 065502, 2005.
[29] Negative differential conductance and hot phonons in suspended nanotube molecular wires, E. Pop, D. Mann, J. Cao, Q. Wang, K. Goodson, and H. Dai, Phys. Rev. Lett. 95, 155505, 2005.
[30] Thermal conductivities of single-walled carbon nanotubes calculated from the complete phonon dispersion relations, Y. F. Gu, and Y. F. Chen, Phys. Rev. B, 76, 134110, 2007.
[31] Measurements of thermal conductivity of individual carbon nanotubes, M. Fujii, X. Zhang, and K. Takahashi, Phys. Stat. Sol.(b), 243, 3385, 2006.
[32] Length dependence of carbon nanotube thermal conductivity and the “problem of long waves”, N. Mingo, and D. A. Broido, Nanoletters, 5, 1221, 2005.
[33] Thermal conductivity of individual single-wall carbon nanotubes, J. R. Lukes, and H. L. Zhong, Journal of Heat Transfer, 129, 705, 2007.
[34] Temperature dependence of the thermal conductivity in chiral carbon nanotubes, N. G. Mensah, G. Nkrumah, S. Y. Mensah, and F. K. A. Allotey, Phys. Lett. A, 329, 369, 2004.
[35] Thermal conductivity of single-walled carbon nanotubes, J. Hone, M. Whitney, and A. Zettle, Synthetic Metals, 103, 2498, 1999.
[36] Thermal conductivity of single-walled carbon nanotubes, J. Hone, M. Whitney, C. Piskoti, and A. Zettle, Phys. Rev. B, 59, R2514, 1999.
[37] Thermal conductivity of multiwalled carbon nanotubes, D. J. Yang, Q. Zhang, G. Chen, S. F. Yoon, J. Ahn, S. G. Wang, Q. Zhou, Q. Wang, and J. Q. Li, Phys. Rev. B, 66, 165440, 2002.
[38] Thermal transport in MWCNT sheets and yarns, A. E. Aliev, C. Guthy, M. Zhang, S. Fang, A. A. Zakhidov, J. E. Fischer, and R. H. Baughman, Carbon, 45, 2880, 2007.
[39] Thermal and electrical transport properties of a self-organized carbon nanotube pellet, H. Xie, J. Mater. Sci. 42, 3695, 2007.
[40] Spark plasma sintering and thermal conductivity of carbon nanotube bulk materials, H. L. Zhang, J. F. Li, K. F. Yao, L. D. Chen, J. Appl. Phys. 97, 114310, 2005.
[41] Fast and highly anisotropic thermal transport through vertically aligned carbon nanotube arrays, I. Ivanov, A. Puretzky, G. Eres, H. Wang, Z. W. Pan, H. T. Cui, R. Y. Jin, J. Howe, and D. B. Geohegan, Appl. Phys. Lett. 89, 223110, 2006.
[42] Anisotropic thermal diffusivity of aligned multiwall carbon nanotube arrays, T. Borca-Tasciuc, S. Vafaei, D. A. Borca-Tasciuc, B. Q. Wei, R. Vajtai, and P. M. Ajayan, J. Appl. Phys. 98, 054309, 2005.
[43] Heat capacity of carbon nanotubes, L. X. Benedict, S. G. Louie, and M. L. Cohen, Solid State Comm. 100, 177, 1996.
[44] Quantized phonon spectrum of single-wall carbon nanotubes, J. Hone, B. Batlogg, Z. Benes, A. T. Johnson, and J. E. Fischer, Science, 289, 1730, 2000.
[45] Linear specific heat of carbon nanotubes, W. Yi, L. Lu, D. L. Zhang, Z. W. Pan, and S. S. Xie, Phys. Rev. B, 59, R9015, 1999.
[46] Analysis of the low-temperature specific heat of multiwalled carbon nanotubes and carbon nanotube ropes, A. Mizel, L. X. Benedict, M. L. Cohen, S. G. Louie, and A. Zettle, Phys. Rev. B, 60, 3264, 1999.
[47] Low-temperature specific heat of nanotube systems, V. N. Popov, Phys. Rev. B, 66, 153408, 2002.
[48] Size and temperature dependence of the specific heat capacity of carbon nanotubes, S. P. Hepplestone, A. M. Ciavarella, C. Jankes, and G. P. Srivastava, Surface Science, 600, 3633, 2006.
[49] Physics of Graphite, B. T. Kelly, Springer press, 1981, 1 ed..
[50] Raman intensity of single-wall carbon nanotubes, R. Saito, T. Takeya, T. Kymura, M. S. Dressehaus, andG. Dressehaus, Phys. Rev. B, 57, 4145, 1998.
[51] The potential environment impact of engineered nanomaterials, V. L. Colvin, Nature Bio. 21, 1166, 2003.
[52] Cellular toxicity of carbon-based nanomaterials, A. Magrez, S. Kasas, V. Salicio, N. Pasquier, J. W. Seo, M. Celio, S. Catsicas, B. Schwaller, and L. Forro, Nanoletters, 6, 1121, 2006.
[53] Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-□B in human keratinocytes, S. K. Manna, S. Sarkar, J. Barr, K. Wise, E. V. Barrera, O. Jejelowo, A. C. Rice-Ficht, and . T. Ramesh, Nanoletters, 5, 1676, 2005.
[54] Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice, A. A. Shvedova, E. R. Kisin, R. Mercer, A. R. Murray, V. J. Johnson, A. I. Potapovich, Y. Y. Tyurina, O. Gorelik, S. Arepalli, D. Schwegler-Berry, A. F. Hubbs, J. Antonini, D. E. Evans, B. K. Ku, D. Ramsey, A. Maynard, V. E. Kagan, V. Castranova, and P. Baron, Am. J. Physiol. Lung Cell Mol. Physiol. 289, L698, 2005.
[55] Single-walled carbon nanotubes can induce pulmonary injury in mouse model, C. C. Chou, H. Y. Hsiao, Q. S. Hong, C. H. Chen, Y. W. Peng, H. W. Chen, and P. C. Yang, Nanoletters, 8, 437, 2008.
[56] Single-walled carbon nanotubes exhibit strong antimicrobial activity, S. Kang, M. Pinault, L. D. Pfefferle, and M. Elimelech, Langmuir, 23, 8670, 2007.
[57] Structure and biological properties of carbon nanotube composite films, R. J. Narayan, C. J. Berry, and R. L. Brigmon, Mat. Sci. Eng. B, 123, 123, 2005.
[58] A single-walled-carbon-nanotube filter for removal of viral and bacterial pathogens, A. S. Brady-Estevez, S. Kang, and M. Elimelech, Small, 4, 481, 2008.
[59] Covalent surface chemistry of single-walled carbon nanotubes, S. Banerjee, T. Hemraj-Benny, and S. Wang, Adv. Mater. 17, 112, 2005.
[60] Soluble ultra-short single-walled carbon nanotubes, Z. Chen, K. Kobashi, U. Rauwald, R. Booker, H. Fan, W. F. Hwang, and J. M. Tour, J. Am. Chem. Soc. 128, 10568, 2006.
[61] Films and fibers of oriented single wall nanotubes, P. Poulin, B. Vigolo, and P. Launois, Carbon, 40, 1741, 2002.
[62] Surfactant assisted processing of carbon nanotube polymer composites, X. Gong, J. Liu, S. Baskaran, R. D. Voise, and J. S. Young, Chem. Mater. 12, 1049, 2000.
[63] Very low conductivity threshold in bulk isotropic single-walled carbon nanotube-epoxy composites, M. B. Bryning, M. F. Islam, J. M. Kikkawa, and A. G. Yodh, Adv. Mater. 17, 1186, 2005.
[64] A low resistance boron-doped carbon nanotube-polystyrene composite, P. C. P. Watts, W. K. Hsu, G. Z. Chen, D. J. Fray, H. W. Kroto, and D. R. M. Walton, J. Mater, Chem. 11, 2482, 2001.
[65] Conductivity enhancement of carbon nanotube composites by electrolyte addition, H. C. Li, S. Y. Lu, S. H. Syue, W. K. Hsu, and S. C. Chang, Appl. Phys. Lett. 93,033104, 2008.
[66] Reinforcement of polymers with carbon nanotubes: the role of nanotube surface area, M. Cadek, J. N. Coleman, K. P. Ryan, V. Nicolosi, G. Bister, A. Fonseca, J. B. Nagy, K. Szostak, F. Beguin, and W. J. Blau, Nanoletters, 4, 353, 2004.
[67] High-Performance nanotube-reinforced plastics: understanding the mechanism of strength increase, J. N. Coleman, M. Cadek, R. Blake, V. Nicolosi, K. P. Ryan, C. Belton, A. Fonseca, J. B. Nagy, Y. K. Gun’ko, and W. J. Blau, Adv. Funct. Mater. 14, 791, 2004.
[68] High electromagnetic adsorption at radiofrequency by impedance matched carbon nanotube composites, Y. C. Chen, C. C. Li, Y. F. Li, W. Chin, Y. H. Lin, S. Y. Lu, C. T. Hsu, S. H. Syue, H. J. Chen, B. Y. Wei, W. K. Hsu, and S. C. Chang, J. Mater. Chem. 18, 4616, 2008.
[69] The complex permittivity of multi-walled carbon nanotube-polystyrene composite films in X-band, P. C. P. Watts, D. R. Ponnampalam, W. K. Hsu, A. Barnes, and B. Chambers, Chem. Phys. Lett. 378, 609, 2003.
[70] Enhancement of polymer luminescence by excitation-energy transfer from multi-walled carbon nanotubes, S. J. Henley, R. A. Hatton, G. Y. Chen, C. Gao, H. Zeng, H. W. Kroto, and S. R. P. Silva, Small, 3, 1927, 2007.
[71] Fabrication of flexible carbon nanotube field emitter arrays by direct microwave irradiation on organic polymer substrate, B. J. Yoon, E. H. Hong, S. E. Jee, D. M. Yoon, D. S. Shim, G. Y. Son, Y. J. Lee, K. H. Lee, H. S. Kim, and C. G. Park, J. Am. Chem. Soc. 127, 8234, 2005.
[72] Field emission from nonaligned carbon nanotubes embedded in a polystyrene matrix, C. H. Poa, S. R. P. Silva, P. C. P. Wattles, W. K. Hsu, H. W. Kroto, and D. R. M. Walton, Appl. Phys. Lett. 80, 3189, 2002.
[73] Macroscopic fibers and ribbons of oriented carbon nanotubes, B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler, C. Jounet, P. Bernier, and P. Poulin, Science, 290, 1331, 2000.
[74] Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning, R. Sen, B. Zhao, D. Perea, M. E. Itkis, H. Hu, J. Love, E. Bekyarova, and R. C. Haddon, Nanoletters, 4, 459, 2004.
[75] Spinning continuous fibers for nanotechnology, Y. Dzenis, Science, 304, 1917, 2004.
[76] Carbon-nanotube-reinforced polyaniline fibers for high-strength artificial muscles, M. E. Kozlov, R. C. Capps, W. M. Sampson, V. H. Ebron, J. P. Ferraris, and R. H. Baughman, Adv. Mater. 17, 614, 2005.
[77] Aligned carbon nanotube composite films for thermal management, H. Huang, C. H. Liu, Y. Wu, and S. S. Fan, Adv. Mater. 17, 1652, 2005.
[78] Interfacial heat flow in carbon nanotube suspensions, S. T. Huxtable, D. G. Cahill, S. Shenogin, L. Xue, R. Ozisik, P. Barone, M. Usrey, M. S. Strano, G. Siddons, M. Shim, and P. Keblinski, Nature Mat. 2, 731, 2003.
[79] On the lack of thermal percolation in carbon nanotube composites, N. Shenogina, S. Shenogin, L. Xue, and P. Keblinski, Appl. Phys. Lett. 87, 133106, 2005.
[80] Role of thermal boundary resistance on the heat flow in carbon-nanotube composites, S. Shenogin, L. Xue, R. Ozisik, P. Keblinski, and D. G. Cahill, J. Apply. Phys. 95, 8136, 2004.
[81] Effective thermal and electrical conductivity of carbon nanotube composites, L. Gao, X. F. Zhou, and Y. L. Ding, Chem. Phys. Lett. 434, 297, 2007.
[82] Effect of chemical functionalization on thermal transport of carbon nanotube composites, S. Shenogin, A. Bodapati, L. Xue, R. Ozisik, and P. Keblinski, Appl. Phys. Lett. 85, 2229, 2004.
[83] Encyclopedia of polymer science and technology, H. F. Mark, chairman, N. G. Ga ylord, and N. M. Bikales, interscience New York press, vol.10, 1964.
[84] Chemical engineering of the single-walled carbon nanotube-nylon 6 interface, J. Gao, B. Zhao, M. E. Itkis, E. Bekyarova, H. Hu, V. Kranak, A. Yu, and R. C. Haddon, J. Am. Chem. Soc. 128, 7492, 2006.
[85] Encyclopedia of polymer science and technology, H. F. Mark, chairman, N. G. Ga ylord, and N. M. Bikales, interscience New York press, vol.6, 1964.
[86] Introduction to solid state physics, C. Kittel, John Wiley and Sons, Inc, 1996,7 th.
[87] The physics of phonons, G. P. Srivastava, Adam Hilger, 1990.
[88] Surface phonons, W. Kress, F. W. de Wette (eds.), Springer-Verlag, 1991.
[89] Phonons in carbon nanotubes, M. S. Dresselhaus, and P. C. Eklund, Adv. In Phys. 49, 705, 2000.
[90] Thermal conductivity of an aligned carbon nanotube array, S. Shaikh, L. Li, K. Lafdi, J. Huie, Carbon, 45, 2608, 2007.
[91] Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity, W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, J. Appl. Phys. 32, 1679, 1961.
[92] Effective medium theory principles and applications, T. C. Choy, Oxford science publications, 1999.
[93] Interface effect on thermal conductivity of carbon nanotube composites, C. W. Nan, G. Liu, Y. H. Lin, and M. Li, Appl. Phys. Lett. 85, 3549, 2004.
[94] Inhomogeneous electron gas, P. Hohenberg, and W. Kohn, Phys. Rev. 136, B864, 1964.
[95] Self-consistent equation including exchange and correlation effects, W. Kohn, and L. J. Sham, Phys. Rev. 140, A1133, 1965.
[96] First-principles simulation: ideas, illustration and the CASTEP code, M. D. L. Segall, P. J. D., M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, J. Phys. : Condens. Matter, 12, 2717, 2002.
[97] Practical methods in ab initio lattice dynamics, G. J. W. Ackland, M. C. Payne, and S. J. Clark, J. Phys. : Condens. Matter, 9, 7861, 1997.
[98] Generalized gradient approximation made simple, J. P. B. Perdew, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865, 1996.
[99] Foundations in microbiology, K. Talaro, and A. Talaro, Wm. C. Brown publishers 1993.
[100] Brock Biology of microorganisms 5th, M. Madigan and J. Martinko, Prentice present.
[101] Microbiology 5th, M. J. Pelczar, E. C. S. Chan, and N, R. Krieg, McGraw-Hill Companies.
[102] DNA and Free radicals, B. Halliwell and O. I. Aruoma , Ellis Horwood limited, 1993.
[103] An introduction to free radicals, J. E. Leffler, John Wiley and Sons, inc, 1993.
[104] Free radicals in biology and medicine 4th , B. Halliwell and J. M. C. Gutteridge, Oxford university press, 2007.
[105] A history of ultraviolet photobiology for human, animals and microorganisms, Hockberger, and E. Philip, photochemistry and photobiology, 76, 561, 2002.
[106] Interfacial characteristics of a carbon nanotube-polystyrene composites system, K. Liao, and S. Li, Appl. Phys. Lett. 79, 4225, 2001.
[107] Thermosetting polyurethane multiwalled carbon nanotube composites, C. McClory, T. McNally, G. P. Brennan, and J. Erskine, J. Appl. Polym. Sci. 105, 1003, 2007.
[108] Shear strain in carbon nanotubes under hydrostatic pressure, S. Reich, H. Jantoljak, and C. Thomsen, Phys. Rev. B, 61, 1297, 1997.
[109] Circuit elements in carbon nanotube-polymer composites, W. K. Hsu, V. Kotzeva, P. C. P. Watts, and G. Z. Chen, Carbon, 42, 1707, 2004.
[110] Temporary transition in suspended carbon nanotube, S. H. Syue, H. F. Kuo, H. J. Chen, U. S. Chen, W. K. Hsu, and H. C. Shih, Appl. Phys. Lett. 92, 232107, 2008.
[111] Science of fullence and carbon nanotubes, M. S. Dresselhaus, G. Dressehaus, and P. C. Eklund, Academic press,1996.
[112] Theory of thermal conductance in carbon nanotube composites, S. Ju, and Z. Y. Li, Phys. Lett. A, 353, 194, 2006.
[113] Manganese (II) induces cell division and increase in superoxide dismutase and catalase activities in an aging deinococcal culture, F. I. Chou and S. T. Tan, J. Bacteriol. 172, 2029, 1990.
[114] Carbon nanotubes as polymer antioxidants, P. C. P. Watts, P. K. Fearon, W. K. Hsu, N. C. Billingham, H. W. Kroto, and D. R. M. Walton, J. Mater. Chem. 13, 491, 2003.
[115] Annealing effect on carbon nanotubes. An ESR study, M. Kosaka, T. W. Ebbesen, H. Hiura, and K. Tanigaki, Chem. Phys. Lett. 233, 47, 1995.
[116] ESR investigations on polyethylene-single wall carbon nanotube composites, M. Chipara, K. Lozano, R. Wilkins, E. V. Barrera, M. X. Pulikkathara, L. Penia-para, M. Chipara, J. Mater. Sci. 43, 1228, 2008.
[117] Electron spin resonance on carbon nanotube-polymer composites, M. Chipara, J. M. Zaleski, D. Hui, C. S. Du, and N. Pan, J. Polym. Sci. Part B : Polym. Phys. 43, 3406, 2005.
[118] Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety, K. Donaldson, R. Aitken, L. Tran, V. Stone, R. Duffin, G. Forrest, and A. Alexander, Toxicol. Sci. 92, 5, 2006.
[119] Carbon nanotube composites for thermal management, M. J. Biercuk, M. C. Llaguno, M. Rakosavljevic, J. K. Hyun, A. T. Johnson, and J. E. Fischer, Appl. Phys. Lett. 80, 2767, 2002.
[120] Fundamentals of molecular spectroscopy 3rd, C. N. Banwell, Mcgraw-Hill Book Company, 1983.
[121] Carbon nanotubes-the route toward application, R. H. Baughman, A. A. Zakhidov, and W. A. d. Heer, Science, 297, 787, 2002.
[122] Continuous spinning of a single-walled carbon nanotube-nylon composite fiber, J. Gao, M. E. Itkis, A. Yu, E. Bekyarova, B. Zhao, and R. C. Haddon, J. Am. Chem. Soc. 127, 3847, 2005.
[123] Theoretical and computational studies of carbon nanotube composites and suspensions: electrical and thermal conductivity, M. Foygel, R. D. Morris, D. Anez, S. French, and V. L. Sobolev, Phys. Rev. B, 71, 104201, 2005