簡易檢索 / 詳目顯示

研究生: 陳廷秝
Chen, Ting-Li
論文名稱: 800 到 950°C下空氣中的鎳基超合金Haynes 282之氧化動力學與氧化層表面殘餘應力分析
Oxidation Kinetics and Residual Stress of Scales of a Ni-based Superalloy Haynes 282 in Dry Air at 800-950°C
指導教授: 藍貫哲
Lan, Kuan-Che
黃嘉宏
Huang, Jia-Hong
口試委員: 開物
Kai, Wu
朱鵬維
Chu, Peng-Wei
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 96
中文關鍵詞: 鎳基超合金Haynes 282高溫氧化氧化層厚度殘餘應力
外文關鍵詞: Nickel-based superalloy, Haynes 282, High temperature oxidation, Thickness of oxide layer, Residual stress
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鎳基超合金Haynes 282為先進超超臨界(A-USC)燃煤發電系統的候選結構材料。本研究利用熱重分析儀(TGA)對Haynes 282進行800、850、900 和950℃下24小時的增重行為分析,並利用箱型爐在相同溫度區間內的空氣中進行12至720小時之氧化,探討該溫度下的短期與長期之氧化動力學,其增重結果與外氧化層厚度增厚之速率皆符合拋物線曲線。此外,利用XRD、帶有EDS的FEG-SEM、FIB-SEM與EPMA對其氧化層進行表面微結構與橫截面微結構觀察、結構判定與成份分析後,得知該合金的氧化層為多層結構,其主要組成相為Rhombohedral-Cr2O3與Spinel-MnCr2O4,Rutile-TiO2與Perovskite-type CoTiO3則形成於外氧化層的表面。內氧化層的主要結構為Rhombohedral-Al2O3與Rutile-TiO2。由白金標記試驗得知,282合金在高溫下氧氣向合金內的擴散通量遠高於金屬離子向外的擴散通量。利用雷射共軛焦光學顯微鏡得知Haynes 282的表面粗糙度隨時間與溫度增加而提高,且在950℃下720小時的氧化後出現外氧化層的剝落與揮發。藉由azimuthal cos^2⁡α sin^2⁡ψ方法量測在800與950℃下12至720小時之氧化後形成之Rhombohedral-Cr2O3表面殘餘應力,扣除冷卻時產生之熱應力後,可以發現其在800℃下氧化時之內應力隨時間增加而由拉應力轉為壓應力,但其在950℃下之內應力皆為拉應力,且其值隨氧化時間增長而提高。期望本研究能提供Haynes 282在未來A-USC系統設計,運轉安全,以及面對意外事故的關鍵參數。


    Nickel-based superalloy Haynes 282 is a candidate structural material for advanced ultra-supercritical (A-USC) coal-fired power generation systems. In this study, the thermogravimetric analyzer (TGA) was used to analyze the mass gain behavior of Haynes 282 at 800, 850, 900, and 950℃ for the exposure time of 24 hours, and a box furnace was used to perform the air oxidation test of Haynes 282 in the same temperature ranging from 12 to 720 hours. The studies of oxidation kinetics revealed that both results of mass gain behavior correspond with the parabolic curve. The increase of the thickness of the external oxide layer with time also conformed to a parabolic curve. By using XRD, FEG-SEM with EDS, FIB-SEM and EPMA respectively to observe the surface and cross-section microstructure of the oxide layer, structure characterization and chemical composition analysis, it was known that the oxide layer of the alloy was multilayer structure. The major oxide phases of the external oxide layer formed on Haynes 282 were rhombohedral-Cr2O3 and spinel-type MnCr2O4. rutile-TiO2 and perovskite-type CoTiO3 were the dominant phases on the surface of the oxide layer. The phases of internal oxide layer were rhombohedral-Al2O3 and Rutile-TiO2. From the result of platinum marker experiment, the diffusion flux of oxygen inward to the substrate of 282 alloy was much higher than that of metallic cation. By using the 3D-measuring laser confocal microscope, it was found that the surface roughness of Haynes 282 increased with time and temperature, and the low-lying region of the external oxide layer was observed in the specimen oxidized for 720 hours at 950°C. The surface residual stress of rhombohedral-Cr2O3 formed at 800 and 950℃ for 12 to 720 hours was measured by the average X-ray strain method. After subtracting the thermal stress generated during cooling, it could be found that the intrinsic stress of Cr2O3 at 800℃ changed from tensile stress to compressive stress as time increased, but that at 950°C was all tensile stress, and its value increased with the increase of oxidation time. It is hoped that the results of this study can provide key parameters for using Haynes 282 in the design of A-USC system such that the safety margin in operation can be enhanced in facing accidents.

    致謝 i 摘要 iii Abstract iv Contents v Lists of Tables vii Lists of Figures viii Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2.1 Advanced power generation systems 3 2.1.1 Advanced ultra-supercritical (A-USC) coal-fired power generation systems 3 2.1.2 Generation IV nuclear energy systems 3 2.2 Nickel base superalloy 4 2.2.1 γ’ strengthened superalloy 4 2.2.2 Haynes 282 5 2.3 High temperature oxidation 5 2.3.1 Introduction to the oxidation of metal 5 2.3.2 Thermodynamic and the stability of the oxide forming on Ni-based alloys 6 2.3.3 Oxidation kinetics of alloys 7 2.3.4 Oxidation of Haynes 282 8 2.4 The stress influence and distribution in the oxide layer of metal alloy 9 Chapter 3 Experimental Details 16 3.1 Material 16 3.2 Sample Preparation 17 3.3 High temperature oxidation 17 3.3.1 Incipient oxidation 17 3.3.2 Long-term oxidation experiment 18 3.4 Structure analysis 19 3.4.1 X-ray diffraction (XRD) θ-2θ analysis 19 3.4.2 Surface macroscope analysis 20 3.4.3 Surface microstructure analysis 20 3.4.4 Cross-section analysis of oxidized-Haynes 282 specimens 21 3.4.5 Marker experiment of the oxidation of Haynes 282 22 3.5 Residual stress measurement 23 Chapter 4 Experimental Results 25 4.1 Still air oxidation kinetics of Haynes 282 25 4.1.1 Incipient oxidation 25 4.1.2 Long term oxidation kinetics 27 4.1.3 Marker experiment of oxidized Haynes 282 30 4.2 Microstructure analysis of pre-/post- Haynes 282 for high temperature oxidation 31 4.2.1 Crystal structure of pre-/post oxidized Haynes 282 31 4.2.2 Surface morphology and chemical composition analysis of oxidized-Haynes 282 36 4.2.2.1 Surface morphology 36 4.2.2.2 Surface roughness of the oxide layer 38 4.2.2.3 Chemical composition 43 4.2.3 Cross sectional observation and the compositional depth-profile of the oxidized-Haynes 282 46 4.2.3.1 Cross sectional observation 46 4.2.3.2 Compositional depth-profile 51 4.3 Residual stress in the external layer of Haynes 282 56 Chapter 5 Discussion 57 5.1 Evolution of crystal structures of external oxide 57 5.2 Evolution of microstructures of external oxide 60 5.3 Evolution of internal oxide 62 5.4 Oxidation kinetics and model of oxidation mechanism 65 5.5 Generation and relaxation of intrinsic stress of the oxide layer on Haynes 282 75 Chapter 6 Conclusion 81 References 82 Appendix A Macroscope images of Haynes 282 oxidized at 800 and 950°C 86 Appendix B SEM images of special shaped oxides which were non equiaxial of Haynes 282 oxidized at 800°C 88 Appendix C The raw data of the composition of the oxide layer on Haynes 282 formed at 800°C and 950°C analyzed by EPMA technique 89 Appendix D Azimuthal cos^2⁡α sin^2⁡ψ 92 Appendix E Texture and crystallography 95

    [1] H.-I.Yoo, Lectures on Kinetic Processes in Materials, (2020).
    [2] 圖表 - 台灣電力股份有限公司, (n.d.). https://www.taipower.com.tw/tc/chart_m/a01_電力供需資訊_電源開發規劃_歷年發購電量及結構.html (accessed August4, 2021).
    [3] World Meteorological Organisation, State of the Global Climate 2020, 2021.
    [4] P.D.Jablonski, J.A.Hawk, C.J.Cowen, P.J.Maziasz, Processing of advanced cast alloys for A-USC steam turbine applications, Jom. 64 (2012) 271–279.
    [5] R.Viswanathan, J.Sarver, J.M.Tanzosh, Boiler materials for ultra-supercritical coal power plants - Steamside oxidation, J. Mater. Eng. Perform. 15 (2006) 255–274.
    [6] R.Viswanathan, J.F.Henry, J.Tanzosh, G.Stanko, J.Shingledecker, B.Vitalis, R.Purgert, U.S. Program on materials technology for ultra-supercritical coal power plants, J. Mater. Eng. Perform. 14 (2005) 281–292.
    [7] Y.Cao, X.Wei, J.Wu, B.Wang, Y.Li, Development of ultra-supercritical power plant in China, Challenges Power Eng. Environ. - Proc. Int. Conf. Power Eng. 2007, ICOPE 2007. (2007).
    [8] S.Birks, S.Roberts, R.Leese, Advances in materials technology for fossil power plants, in: Adv. Mater. Technol. Foss. Power Plants - Proc. from 7th Int. Conf., (2014).
    [9] M.A. and othersKamide, Hideki and Rodriguez, Gilles and Guiberteau, Philippe and Kawasaki, Nobuchika and Hatala, Branislav and Alemberti, Alessandro and Bourg, Stephane and Huang, Yanping and Serre, Frederic and Fuetterer, Generation IV International Forum-GIF, Annual Report 2020, (2021).
    [10] Nuclear Energy Agency [NEA], Technology Roadmap Update for Generation IV Nuclear Energy Systems, Gen IV Int. Forum. (2014) 1–66.
    [11] B.S.Murty, S.Ranganathan, J.W.Yeh, P.P.Bhattacharjee, High-entropy alloys, (2019).
    [12] M.J.Donachie, Superalloys: A Technical Guide, 2nd Edition, America (NY). (2002).
    [13] R.C.Reed, The Superalloys fundamentals and applications, (2006).
    [14] L.M.Pike, HAYNES® 282TM alloy - A new wrought superalloy designed for improved creep strength and fabricability, in: Proc. ASME Turbo Expo, (2006).
    [15] K.Y.Shin, J.H.Kim, M.Terner, B.O.Kong, H.U.Hong, Effects of heat treatment on the microstructure evolution and the high-temperature tensile properties of Haynes 282 superalloy, Mater. Sci. Eng. A. 751 (2019) 311–322.
    [16] C.J.Boehlert, S.C.Longanbach, A comparison of the microstructure and creep behavior of cold rolled HAYNES® 230 alloyTM and HAYNES® 282 alloyTM, Mater. Sci. Eng. A. 528 (2011) 4888–4898.
    [17] A.Ghoneim, O.A.Ojo, Microstructure and mechanical response of transient liquid phase joint in Haynes 282 superalloy, Mater. Charact. 62 (2011) 1–7.
    [18] H.White, M.Santella, E.D.Specht, Weldability of haynes 282 alloy for new fabrications and after service exposure, Energy Mater. Mater. Sci. Eng. Energy Syst. 4 (2009) 84–91.
    [19] J.Caron, L.Pike, Weldability of HAYNES 282 superalloy after long-term thermal exposure, MATEC Web Conf. 14 (2014).
    [20] D.J.Young, High Temperature Oxidation and Corrosion of Metals: Second Edition, (2016).
    [21] C.Wagner, Beitrag zur Theorie des Anlaufvorgangs, Zeitschrift Für Phys. Chemie. (1933).
    [22] Dudziak, T., et al. "Steam oxidation resistance and performance of newly developed coatings for Haynes® 282® Ni-based alloy."Corrosion Science 138 (2018): 326-339.
    [23] D.R.Gaskell, Introduction to the Thermodynamics of Materials, (2012).
    [24] D.-I.B.Rumpf, Thermochemical data of pure substances, (1997).
    [25] P.Kofstad, High Temperature Corrosion, Elsevier Appl. Sci. Publ. House, Lint. Roa, Barking. (1988).
    [26] C.S.Giggins, F.S.Pettit, Oxidation of Ni-Cr-Al Alloys Between 1000 and 1200°C, J. Electrochem. Soc. 118 (1971) 1782.
    [27] F.A.Pérez-González, N.F.Garza-Montes-de Oca, R.Colás, High Temperature Oxidation of the Haynes 282© Nickel-Based Superalloy, Oxid. Met. 82 (2014) 145–161.
    [28] F.A.Pérez-González, J.H.Ramírez-Ramírez, M.Terock, N.F.Garza-Montes-de-Oca, U.Glatzel, R.Colás, High-temperature oxidation of a nickel base superalloy at different oxygen partial pressures, Corros. Eng. Sci. Technol. 51 (2016) 513–521.
    [29] T.Dudziak, V.Deodeshmukh, L.Backert, N.Sobczak, M.Witkowska, W.Ratuszek, K.Chruściel, A.Zieliński, J.Sobczak, G.Bruzda, Phase Investigations Under Steam Oxidation Process at 800°C for 1000h of Advanced Steels and Ni-Based Alloys, Oxid. Met. 87 (2017) 139–158.
    [30] J.Wang, H.Xue, Y.Wang, Oxidation behavior of Ni-based superalloy GH738 in static air between 800 and 1000°C, Rare Met. 40 (2021) 616–625.
    [31] M.A.Bodude, R.N.Nnaji, L.O.Osoba, Comparative Studies on the High Temperature Oxidation Behaviour of Haynes 282 and Inconel 718 Nickel–Based Superalloys, Acta Tech. Corviniensis - Bull. Eng. 11 (2018) 119–126.
    [32] Z.Liang, Q.Zhao, High temperature oxidation of Fe–Ni-base alloy HR120 and Ni-base alloy HAYNES 282 in steam, Mater. High Temp. 36 (2019) 87–96.
    [33] T.Dudziak, L.Boron, A.Gupta, S.Saraf, P.Skierski, S.Seal, N.Sobczak, R.Purgert, Steam oxidation resistance and performance of newly developed coatings for Haynes® 282® Ni-based alloy, Corros. Sci. 138 (2018) 326–339.
    [34] H.E.Evans, Cracking and spalling of protective oxide layers, Mater. Sci. Eng. A. 120–121 (1989) 139–146.
    [35] H.E.Evans, Stress effects in high temperature oxidation of metals, Int. Mater. Rev. 40 (1995) 1–40.
    [36] A.M.Huntz, Stresses in NiO, Cr2O3 and Al2O3 oxide scales, Mater. Sci. Eng. A. 201 (1995) 211–228.
    [37] S.J.Bull, Modeling of Residual Stress in Oxide Scales, Oxid. Met. 49 (1998) 1–17.
    [38] W.D.Nix, B.M.Clemens, Crystallite coalescence: A mechanism for intrinsic tensile stresses in thin films, J. Mater. Res. (1999).
    [39] R.W.Hoffman, Stresses in thin films: The relevance of grain boundaries and impurities, Thin Solid Films. 34 (1976) 185–190.
    [40] M.J.Bennett, D.P.Moon, Effect of Active Elements on the Oxidation Behaviour of Cr2O3-Formers, in: Role Act. Elem. Oxid. Behav. High Temp. Met. Alloy., (1989).
    [41] C.Xu, W.Gao, Pilling-bedworth ratio for oxidation of alloys, Mater. Res. Innov. (2000).
    [42] M.E.Hilley, Principles of X-ray stress measurements, in: SAE Tech. Pap., (1972).
    [43] I.C.Noyan, J.B.Cohen, Residual Stress - Measurement by Diffraction and Interpretation, (1987).
    [44] C.T.Sims, N.S.Stoloff, W.C.Hagel, Superalloys II, in: Superalloys II, (1987).
    [45] I.O.Aver’yanova, D.Y.Bogomolov, V.V.Poroshin, ISO 25178 standard for three-dimensional parametric assessment of surface texture, Russ. Eng. Res. (2017).
    [46] C.H.Ma, J.H.Huang, H.Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction, Thin Solid Films. 418 (2002) 73–78.
    [47] A.Wang, C.Chuang, G.Yu, J.Huang, Surface & Coatings Technology Determination of average X-ray strain ( AXS ) on TiN hard coatings using cos2α sin2ψ X-ray diffraction method, Surf. Coat. Technol. 262 (2015) 40–47.
    [48] F.H.Stott, Protective oxide scales and their breakdown, Corros. Sci. (1997).
    [49] C.S.Richard, J.Lu, G.Béranger, F.Decomps, Study of Cr2O3 coatings Part II: Adhesion to a cast-iron substrate, J. Therm. Spray Technol. 4 (1995) 347–352.
    [50] H.E.Swanson, E.Tatge, Circular of the Bureau of Standards no. 539 volume 1: standrad x-ray diffraction powder patterns, Natl. Bur. Stand. (U.S.), Circ. 539. (1953).
    [51] H.F.McMurdie, E.H.Evans, M.C.Morris, B.Paretzkin, W.Wong-Ng, L.Ettlineer, C.R.Hubbard, Standard X-Ray Diffraction Powder Patterns from The JCPDS Research Associateship, Powder Diffr. 1 (1986) 45.
    [52] H.E.Swanson, E.Tatge, Standard X-ray diffraction powder patterns CIRCULAR 539, Natl. Bur. Stand. (U.S.), Circ. 539. (1953).
    [53] L.M.Corliss, J.M.Hastings, Magnetic structure of manganese chromite, J. Appl. Phys. (1962).
    [54] R.E.Newnham, J.H.Fang, R.P.Santoro, Crystal structure and magnetic properties of CoTiO3, Acta Crystallogr. 17 (1964) 240–242.
    [55] K.Martin, G.McCarthy, I.Grant-in-Aid, North Dakota State University, Fargo, ND, USA, ICDD, Grant-in-Aid. (1991).
    [56] P.J.Potts, J.Zussman, A Handbook of Silicate Rock Analysis., A Handb. Silic. Rock Anal. (1987) 336.
    [57] A.N.Wang, J.H.Huang, H.W.Hsiao, G.P.Yu, H.Chen, Residual stress measurement on TiN thin films by combing nanoindentation and average X-ray strain (AXS) method, Surf. Coatings Technol. 280 (2015) 43–49.
    [58] R.E.Lobnig, H.P.Schmidt, K.Hennesen, H.J.Grabke, Diffusion of cations in chromia layers grown on iron-base alloys, Oxid. Met. 37 (1992) 81–93.
    [59] P.Jian, L.Jian, H.Bing, G.Xie, Oxidation kinetics and phase evolution of a Fe-16Cr alloy in simulated SOFC cathode atmosphere, J. Power Sources. 158 (2006) 354–360.
    [60] A.Yankin, O.Vikhreva, V.Balakirev, P-T-x diagram of the Co-Ti-O system, J. Phys. Chem. Solids. 60 (1999) 139–143.
    [61] A.C.S.Sabioni, A.M.Huntz, F.Millot, C.Monty, U.F.DeOuro, Self-diffusion in Cr2O3 III . Chromium and oxygen grain-boundary diffusion in polycrystals, (2006) 37–41.
    [62] N.Birks, G.H.Meier, F.S.Pettit, Introduction to the high temperature oxidation of metals, Second edition, (2006).
    [63] Reza Abbaschian, L.Abbaschian, R.E.Reed-Hill, Physical Metallurgy Principles - SI Version, 4th ed., Cengage Learning, (2009).
    [64] K.Shibata, M.Yoshinaka, K.Hirota, O.Yamaguchi, Fabrication and mechanical properties of Cr2O3 solid solution ceramics in the system Cr2O3-Al2O3, Mater. Res. Bull. 32 (1997) 627–632.
    [65] R.A.RAPP, Kinetics, Microstructures and Mechanism of Internal Oxidation - Its Effect and Prevention in High Temperature Alloy Oxidation, Corrosion. (1965).
    [66] W.Zhao, Steam effects on oxidation behavior of alumina-scale forming nickel-based alloys and a kinetics analysis of complex scale evolution during isothermal oxidation., Diss. Univ. Pittsburgh. 66 (2012) 37–39.
    [67] A.C.S.Sabioni, A.M.Huntz, F.Millot, C.Monty, Self-diffusion in Cr2O3 III. Chromium and oxygen grain-boundary diffusion in polycrystals, Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop. (1992).
    [68] F.A.Kröger, H.J.Vink, Relations between the Concentrations of Imperfections in Crystalline Solids, Solid State Phys. - Adv. Res. Appl. 3 (1956) 307–435.
    [69] P.Kofstad, Note on the defect structure of rutile (TiO2), J. Less-Common Met. 13 (1967) 635–638.
    [70] P.Kofstad, High-temperature oxidation of titanium, J. Less-Common Met. (1967).
    [71] B.Pieraggi, Calculations of parabolic reaction rate constants, Oxid. Met. 27 (1987) 177–185.
    [72] A.C.S.Sabioni, B.Lesage, A.M.Huntz, J.C.Pivin, C.Monty, Self-diffusion in Cr2O3 I. Chromium diffusion in single crystals, Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop. 66 (1992) 333–350.
    [73] P.Kofstad, K.P.Lillerud, Chromium transport through Cr2O3 scales I. On lattice diffusion of chromium, Oxid. Met. 17 (1982) 177–194.
    [74] A.N.Cox, C.A.Pilachowski, Allen’s Astrophysical Quantities, Phys. Today. (2000).
    [75] Z.Liang, P.M.Singh, Q.Zhao, Y.Wang, High Temperature Oxidation of Newly Developed Alloy 282 in the Flowing-Air and Steam Condition at 900–1100°C, Oxid. Met. 84 (2015) 291–305..
    [76] S.R.J.Saunders, M.Monteiro, F.Rizzo, The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: A review, Prog. Mater. Sci. 53 (2008) 775–837.
    [77] I.G.Wright, R.B.Dooley, A review of the oxidation behaviour of structural alloys in steam, Int. Mater. Rev. (2010) 129.
    [78] M.Archana, C.J.Rao, S.Ningshen, J.Philip, High-Temperature Air and Steam Oxidation and Oxide Layer Characteristics of Alloy 617, J. Mater. Eng. Perform. 30 (2021) 931–943.
    [79] J.Rumble, Handbook of Chemistry and Physics 100th Edition, (2019).
    [80] J.F.Shackelford, Y.-H.Han, S.Kim, S.-H.Kwon, CRC Materials Science and Engineering Handbook, (2016).
    [81] K.L.Kruger, HAYNES 282 alloy, Elsevier Ltd, (2017).
    [82] H.M.Tung, J.F.Stubbins, Incipient oxidation kinetics of alloy 617 and residual stress of the oxide scale formed in air at temperatures between 850 and 1000°C, J. Nucl. Mater. 424 (2012) 23–28.
    [83] H.M.Tung, J.F.Stubbins, Incipient oxidation kinetics and residual stress of the oxide scale grown on Haynes 230 at high temperatures, Mater. Sci. Eng. A. 538 (2012) 1–6.
    [84] R.E.Bedworth, N.B.Pilling, The oxidation of metals at high temperatures, J Inst Met. (1923).
    [85] A.M.Huntz, A.Boumaza, G.Moulin, Improvement of the oxidation resistance of superalloys by low-pressure, plasma-sprayed MCrAlYTa coatings. I, Oxid. Met. (1988).
    [86] J.Callister, William D., Materials Science and Engineering - An Introduction (9th ed.), (2014).
    [87] R. D. SHANNON, Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides, Acta Crystallogr. Sect. A. 32 (1976) 751–767.
    [88] L.N.Brewer, J.R.Michael, Risks of “Cleaning” Electron Backscatter Diffraction Data, Micros. Today. (2010).

    QR CODE