研究生: |
章興國 Chang, Hsin-Kuo |
---|---|
論文名稱: |
具有分散相的塗液在淋幕式塗佈之行為研究 Curtain Coating of Dilute Suspensions |
指導教授: |
劉大佼
Liu, Ta-Jo |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 134 |
中文關鍵詞: | 淋幕式塗佈 、懸浮液 、空氣滲入 、膜分離假說 、流體力學協助 、動態表面張力 |
外文關鍵詞: | curtain coating, dilute suspension, air entrainment, film-splitting hypothesis, hydrodynamic assist, dynamic surface tension |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的為了解具有分散相的塗液在淋幕式塗佈中之影響,為形成具有分散相的塗液我們將微米級粒子加入甘油/水溶液(glycerol/water solution)以及聚乙烯醇/水溶液(polyvinyl alcohol/water solution)中進行分散,該粒子乃是採用聚甲基丙烯酸甲酯(Poly(methyl methacrylate), PMMA )以及二氧化矽(Silica)所合成之微米級粒子。
經實驗發現於甘油/水溶液系統中添加PMMA 粒子所形成之塗液系統,會有效擴大淋幕式塗佈之視窗,不僅有助於延緩發生空氣滲入的現象,亦可提升最大塗佈速度,並且在無沖刷液的邊桿系統中還具有助於降低最小成膜流量的優點。本研究對此現象及其機制進行深入探討。
由實驗結果可知當淋幕高度為5 公分時,不論是將PMMA 粒子添加在70%或80%甘油水溶液的塗液系統,均有助於延後空氣滲入發生的現象;而當提高淋幕高度為10 公分時,可以發現最低成膜流量雖會因為邊桿高度的提高而降低,但在70%甘油水溶液系統的塗佈視窗中加入粒子提高最大塗佈速度的效果消失,反觀80%甘油水溶液系統的塗佈視窗中卻有不同現象,與70%甘油水溶液的系統不同的是在隨著添加PMMA 粒子濃度提高時其最大塗佈速度也會隨之變大,最特殊的是在添加5% MBX-5 粒子時,在某些特定流量下,最大塗佈速度上限會高於4 m/s。
添加PMMA 粒子有助於延後空氣滲入提高最大塗佈速度之現象,我們所提出的物理行為解釋為,甘油/水溶液的塗液系統在加入粒子後,使得在氣液界面快速產生時的動態表面張力數值降低,且當粒子濃度越高時,在低的表面生成期間(surface age)下的動態表面張力值也會越低,如此一來在塗佈時就會對基材的有更好的濕潤能力,以致塗佈時的動態潤濕線可以更穩定,能夠承受較高的塗佈速度,以延後空氣滲入缺陷發生的時機。
對照以聚乙烯醇/水溶液的實驗就可以驗證以上推論,若將塗液的黏度調整在相近範圍下進行動態表面張力量測,發現在氣液界面快速產生時的動態表面張力數值並不會因為加入粒子而降低,如此一來也就較不易發生延後空氣滲入的效應,之後由其塗佈視窗大小變化的結果也可相對印證。
1. Benkreira, H., 2004. The effect of substrate roughness on air entrainment in dip coating. Chemical Engineering Science 59, 2745-2751.
2. Blake, T.D., Clarke A., Ruschak K.J., 1994. Hydrodynamic assist of dynamic wetting. AIChE Journal 40, 229-242.
3. Blake, T. D., Ruschak, K. J., 1997. Wetting: static and dynamic contact lines, in: Kistler, S.F., Schweizer, P.M., (Eds.), Liquid Film Coating. Chapmans Hall, London.
4. Blake, T.D., Shikhmurzaev, Y.D., 1999. Experimental evidence of hydrodynamic influence on the dynamic contact angle. Physics of Fluids 11, 1955-2007.
5. Blake, T.D., Dobson, R.A., Ruschak, K.J., 2004. Wetting at high capillary numbers. Journal of Colloid and Interface Science 279, 198-205.
6. Brown, D.R., 1961. A study of the behavior of thin sheet of moving liquid. Journal of Fluid Mechanics 10,297-303.
7. Buonopane, R.A., Gutoff, E.B., Rimore, M.M.T., 1986. Effect of plunging tape surface properties on air-entrainment velocity. Aiche Journal 32, 682-683.
8. Chu, W.B., Yang, J.W., Wang, Y.C., Liu, T.J., Tiu, C., Guo, J., 2006. The effect of inorganic particles on slot die coating of poly(vinyl alcohol) solutions. Journal of Colloid and Interface Science 297, 215–225.
9. Chu, W.B., Yang, J.W., Liu, T.J., Tiu, C., Guo, J., 2007. The effects of pH, molecular weight and degree of hydrolysis of poly(vinyl alcohol) on slot die coating of PVA suspensions of TiO2 and SiO2. Colloids and Surfaces A : Physicochemical and Engineering Aspects 302, 1-10.
10. Clarke, A., 2002. Coating on a rough surface. AIChE Journal 48, 2149-2156.
11. Cohen, E. D., Gutoff, E. B., 1992. Modern coating and drying technology. VCH Publishers, New York.
12. Einstein, A., 1906. A new determination of the molecular dimension. Annalen der Physik 19, 289-306.
13. Gutoff, E.B., Cohen E.D., 2006. Coating and drying defects, second ed. John Wiley & Sons, New Jersey.
14. Hughes, D.J., 1970. Method for simultaneously applying a plurality of coated layers by forming a stable multilayer free-falling vertical curtain. US Patent 3,508,947.
15. Kihm, K.D., Deignan, P., 1995. Dynamic surface tension of coal-water. Fuel 74, 295-300.
16. Kistler, S. F., 1983. The fluid mechanics of curtain coating and related viscous free surface flow with contact lines. Univ. of Minnesota Ph. D. thesis, 414–421.
17. Kistler, S. F., Scriven, L. E., 1984. Coating flow theory by finite element and asymptotic analysis of The Navier-Stokes system. International Journal for Numerical Methods in Fluids 4, 207-229.
18. Kistler, S.F., Schweizer, P.M., (Eds.), 1997. Liquid Film Coating. Chapman & Hall, London.
19. Kondo, Y., Fukazawa, K., Nishiwaki, A., 1999. Curtain coating with dynamic surface tension control of layers. US Patent 5,871,821.
20. Lin, S.P., 1981. Stability of a viscosity liquid curtain. Journal of Fluid Mechanics 104,111-118.
21. Lin, Y.T., Chu, W.B., Liu, T.J., 2009. Slot die coating of dilute suspensions. Asia-Pacific Journal of Chemical Engineering 4, 125-132.
22. Macosko, C.W., 1994. Rheology: principles measurements and applications. Wiley-VCH Publishers, New York.
23. Marston, J.O., Simmons, M.J.H., Decent, S.P., Kirk, S.P., 2006. Influence of the flow field in curtain coating onto a prewet substrate. Physics of Fluids 18, 112102-1-10.
24. Marston, J.O., Simmons, M.J.H., Decent , S.P., 2007. Influence of viscosity and impingement speed on intense hydrodynamic assist in curtain coating. Exp Fluids 42, 483–488.
25. Mooney, M., 1951. The viscosity of a concentrated suspension of spherical particles. Journal of Colloid and Interface Science 6, 162-170.
26. Pugh, R.J., 2001. Dynamic surface tension measurements in mineral flotation and de-ink flotation systems and the development of the on line dynamic surface tension detector. Minerals Engineering 14, 1019-1031.
27. Reiter, T.C., 1989. Curtain coating method and apparatus. US Patent 4,830,887.
28. Reiter, T.C., 1994. Curtain coating method and apparatus using dual wire edge guides. US Patent 5,328,726.
29. Schweizer, P.M., 2003. Curtain coating – stability a critical operating parameter. PITA Coating Conference, 28-35.
30. Tricot, Y.M., 1997. Surfactants: static and dynamic surface tension, in: Kistler, S.F., Schweizer, P.M., (Eds.), Liquid Film Coating. Chapmans Hall, London.
31. Tsai, H.C., Chang, H.M., Liu, T.J., 2009. Coating weight reduction by a carrier layer for tensioned-web slot coating. Polymer Engineering and Science 49, 1784-1792.
32. Yamamura, M., Miura, H., Kage, H., 2005. Postponed air entrainment in dilute suspension coatings. AIChE Journal 51, 2171-2177.
33. Yamamura, M., Matsunaga, A., Mawatari, Y., Adachi, K., Kage, H., 2006. Particle-assisted dynamic wetting in a suspension liquid jet impinged onto a moving solid at different flow rates. Chemical Engineering Science 61, 5421-5426.
34. Yu, W.J., Liu, T.J., Yu, T.A., 1995. Reduction of the minimum wet thickness in extrusion slot coating. Chemical Engineering Science 50, 917-920.