研究生: |
曾昶尊 Zeng, Ceng-Zun. |
---|---|
論文名稱: |
氮化鎵紫外光檢測二極體與高速元件之研製 Study of GaN UV pin Photodiodes and HEMTs |
指導教授: |
吳孟奇
Wu, Meng-Chyi |
口試委員: |
劉柏村
劉嘉哲 李峰旻 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 57 |
中文關鍵詞: | 氮化鎵 、紫外光檢測器 、高速元件 、鈍化 、抗反射層 、液態的高分子材料 |
外文關鍵詞: | GaN, UV Photodiodes, HEMTs, Passivation, anti reflection, SOG |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗可分為兩大部分,第一部分為氮化鎵材料應用於光檢測器之研製,第二部分為氮化鎵材料應用於高電子遷移率電晶體之研製。在光檢測器的部分,使用兩種樣不同基質之樣本,先以乾蝕刻技術,定義出p-n界面,再用熱蒸鍍機鍍上Ti/Al、Ni/Au,經過快速熱退火,形成Ohmic contact完成p-i-n二極體,二極體完成後,利用鈍化技術抑制因磊片本身缺陷以及蝕刻轟擊所造成之漏電流,再設計抗反射層,增加有效光載子進入。鈍化技術分別採用ALD、SOG、PECVD成長薄膜,將側壁以及表面缺陷覆蓋,達到抑制漏電流之效果。經過鈍化技術處理後,當電壓操作在-5V時,可以將漏電流抑制在10-14A。抗反射層則是採用ALD、PECVD,透過薄膜厚度的調變,減少光源反射,經過抗反射層的設計,響應度可以來到10-2A/W。
第二部分為高電子遷移率電晶體之研製,使用兩種樣不同來源之樣本,比較兩樣本之電特性。先以乾蝕刻技術,定義出汲極、源極、閘極並打穿2DEG,再用電子槍蒸鍍機鍍上Ti/Al/Ti/Au,經過快速熱退火,形成Ohmic contact,接著使用熱蒸鍍機鍍上Ni/Au,形成一Schottky contact完成高電子遷移率電晶體,鈍化處理採用披覆性好、緻密度高的ALD做為鈍化薄膜,比較鈍化處理後之特性。經過鈍化處理後,除了降低漏電流外,飽和電流密度以及Gm值都有所提升,飽和電流從,200 mA/mm提升到310 mA/mm,Gm值從85ms/mm提升到107ms/mm。
This experiment can be divided into two major parts, The first part is the development of GaN materials used in photodetectors,The second part is the application of gallium nitride materials in the development of high electron mobility transistors. In the photodetector section, two different matrix samples are used, The dry-etching technique was used to define the p-n interface and then Ti/Al and Ni/Au were deposited on the thermal evaporator, After rapid thermal annealing, an Ohmic contact is formed to complete the p-i-n diode. After the diodes are completed, the passivation technology is used to suppress the leakage current caused by the defects of the wafer itself and the etching bombardment, The antireflection layer is designed again to increase the entrance of effective photocarriers. The passivation technology adopts ALD, SOG, and PECVD growth films, respectively, to cover sidewalls and surface defects to achieve the effect of suppressing leakage current, Passivation technology, operating at -5V, the leakage current can be suppressed at 10-14A. The anti-reflection layer is ALD, PECVD, through the film thickness modulation, reduce the light source reflection, through the anti-reflection layer design, the responsivity can come to 10-2A/W.
The second part is the development of high electron mobility transistors, Using two different sources of samples, compare the electrical characteristics of the two samples. The dry etching technique was used to define the drain, source and gate electrodes and punch through the 2DEG. The electron gun deposition machine was used to plate Ti/Al/Ti/Au, After rapid thermal annealing, an Ohmic contact is formed, and then Ni/Au is plated on a thermal evaporator to form a Schottky contact to complete the high electron mobility transistor, The passivation process adopts ALD with high coverage and high density as passivation film, Compare the properties after passivation. After passivation, in addition to reducing the leakage current, the saturation current density and the Gm value have been improved, The saturation current is increased from 200 mA/mm to 310 mA/mm, and the Gm value is increased from 85 ms/mm to 107 ms/mm.
[1]X. A. Cao, H. Lu, S. F. LeBoeuf, C. Cowen, S. D. Arthur, and W. Wang, “Growth and characterization of GaN PiN rectifiers on free-standing GaN,” Appl. Phys. Lett., 87, 053503 (2005).
[2]孫慶成,光電概論,三版,台北縣,全華圖書,民98。
[3]石正楓,「GaN 異質結構場效電晶體之研究」,國立交通大學電子研究所-碩士論文,2003。
[4]Hong Xiao,半導體製程技術導論,羅正忠、張鼎張等譯,二版,台北市,台灣培生教育出版,民91。
[5]BEN G.STREETMAN,SANJAY BANERJEE,半導體元件solid state
electronic devices,第五章、第六章,吳孟奇等譯,初版,台北市,台灣東華,民90。
[6]M. D’Hondt, I. Moerman, P. van Daele, and P. Demeester, “Influence of buffer layer and processing on the dark cuirrent of 2.5 pm-wavelength 2%-mismatched InGaAs photodetectors,” IEE Proc. J, vol. 144, no. 5, pp. 277–282, 1997.
[7]J. Harari, F. Journet, O. Rabii, G. H. Jin, J. P. Vilcot, and D. Decoster, “Modeling of waveguide PIN photodetectors under very high optical power,” IEEE Trans. Microwave Theory Tech., vol. 43, no. 9, pp. 2304–2310, Sep. 1995.
[8]Y.C.Chou, “Degradation of AlGaN/GaN HEMTs under elvated
temperature lifetesting",Northrop Grumman Space Technology,May
2004.
[9]E. Muñoz, “(Al,In,Ga)N-based photodetectors. Some materials issues,”
Phys. Stat. Sol. B, vol. 244, no. 8, pp. 2859–2877, Jun. 2007.
[10]S. J. Chang, S. M. Wang, P. C. Chang, C. H. Kuo, S. J. Young, T. P. Chen,S. L.Wu, and B. R. Huang, “GaN Schottky barrier photodetectors,” IEEE Sensors J., vol. 10, no. 10, pp. 1609–1614, Oct. 2010.
[11]E. Muñoz, E. Monroy, J. L. Pau, F. Calle, F. Omnès, and P. Gibart,
“III nitrides and UV detection,” J. Phys. Condens. Matter, vol. 13, pp.
7115–7137, 2001.