簡易檢索 / 詳目顯示

研究生: 袁孝安
Yuan,Shiao-An
論文名稱: 建立一個最小前進集合以用於無線隨意網路上的保證傳輸地理繞徑
Construction of Minimum Progress Set for Guaranteed Delivery of Geographic Routing in Wireless Ad-Hoc Networks
指導教授: 蔡明哲
Tsai,Ming-Jer
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2008
畢業學年度: 97
語文別: 英文
論文頁數: 29
中文關鍵詞: 無線隨意網路地理繞徑面繞徑
外文關鍵詞: wireless ad-hoc networks, geographic routing, face routing
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於全球衛星定位系統的普及,有許多利用節點實際位址的無線隨意網路之地理繞徑協定被提出。其中像是GPSR、GFG、GOAFR+、GPVFR和FaceTrace,都能夠在繞徑遭遇凹節點時,利用邊傳送回到前進節點。
    在這些類似GPSR的繞徑協定中,凹節點都不會有任何前進節點的資訊,所以這些凹節點經常會在邊傳送時使用錯誤的方向,使得繞徑的效率並不高。在這篇論文中,我們提出了Zone-MPS演算法,用以建立前進節點的集合,使得對於任何的終點都至少有一個前進節點在集合或鄰居內。並且提出了一個類似GPSR的繞徑協定: MPS-GRLF,在邊傳送時利用前進節點集合。實驗顯示,與GPSR、GFG、GOAFR+、GPVFR和FaceTrace相比,MPS-GRLF所得到的路徑是最短的。


    Due to the popularity of the global positioning system, multiple geographic routing
    protocols are proposed to route packets based on the physical addresses of nodes in
    wireless ad-hoc networks. The GPSR-like routing protocols, such as GPSR, GFG,
    GOAFR+, GPVFR, and FaceTrace, guarantee packet delivery by routing a packet
    from a concave node to a progress node along the face boundary during perimeter
    forwarding. In the existing GPSR-like routing protocols, however, a concave node
    has no information about progress nodes; therefore, the concave node often forwards
    the packet along the face boundary in a wrong direction during perimeter forwarding,
    resulting in inefficient routing. In this paper, we first propose an algorithm, Zone-
    MPS, to construct the progress set of a node, such that for any destination at least
    one progress node is in the progress set or the neighbor set of the node. Subsequently,
    a GPSR-like routing protocol, MPS-GRLF, is proposed to route a packet based on
    progress sets during perimeter forwarding. Simulations show that MPS-GRLF conducts
    a shorter routing path, as compared to GPSR, GFG, GOAFR+, GPVFR, and
    FaceTrace.

    Abstract i Contents ii List of Figures iv 1 Introduction 1 2 Stuck Region and Progress Set 5 3 Algorithm Zone-MPS 7 4 Algorithm MPS-GRLF 12 5 Analysis of Zone-MPS and MPS-GRLF 14 5.1 Correctness of Zone-MPS . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.2 Sizes of Progress Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.3 Guaranteed Delivery of MPS-GRLF . . . . . . . . . . . . . . . . . . . 19 6 Performance Evaluation 20 6.1 Greedy Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 6.2 Path Stretch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 6.3 Maximum Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 6.4 Comparison of GPSR-like Routing Protocols . . . . . . . . . . . . . . 23 7 Conclusion 26 Bibliography 28

    [1] H. Takagi and L. Kleinrock, “Optimal transmission ranges for randomly distributed
    packet radio terminals,” IEEE Transactions on Communications, vol.
    32, pp. 246257, 1984.
    [2] E. Kranakis, H. Singh, and J. Urrutia, Compass routing on geometric networks,
    in CCCG, 1999.
    [3] I. Stojmenovic and X. Lin, Loop-free hybrid single-path/flooding routing algorithms
    with guaranteed delivery for wireless networks, IEEE Transactions on
    Parallel and Distributed Systems, vol. 12, pp. 10231032, 2001.
    [4] I. Stojmenovic, Position-based routing in ad hoc networks, IEEE Communications
    Magazine, vol. 40, pp. 128134, 2002.
    [5] N. Ahmed, S. Kanhere, and S. Jha, The holes problems in wireless sensor networks:
    A survey, ACM Sigmobile Mobile Computing and Communication Review,
    vol. 9, pp. 418, 2005.
    [6] Q. Fang, J. Gao, and L. J. Guibas, Locating and bypassing routing holes in
    sensor networks, in IEEE INFOCOM, 2004.
    [7] S. Subramanian, S. Shakkottai, and P. Gupta, Optimal geographic routing for
    wireless networks with near-arbitrary holes and traffic, in IEEE INFOCOM,
    2008.
    28
    BIBLIOGRAPHY 29
    [8] Z. Jiang, J. Ma, W. Lou, and J.Wu, An information model for geographic greedy
    forwarding in wireless ad-hoc sensor networks, in IEEE INFOCOM, 2008.
    [9] B. Karp and H. Kung, GPSR: Greedy perimeter stateless routing for wireless
    networks, in ACM MOBICOM, 2000.
    [10] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia, Routing with guaranteed
    delivery in ad hoc wireless networks, ACM Wireless Networks, vol. 7, pp. 609616,
    2001.
    [11] F. Kuhn, R.Wattenhofer, Y. Zhang, and A. Zollinger, Geometric ad-hoc routing:
    Of theory and practice, in ACM PODC, 2003.
    [12] B. Leong, S. Mitra, and B. Liskov, Path vector face routing: Geographic routing
    with local face information, in IEEE ICNP, 2005.
    [13] H. Frey and I. Stojmenovic, On delivery guarantees of face and combined greedyface
    routing in ad hoc and sensor networks, in ACM MOBICOM, 2006.
    [14] F. Zhang, H. Li, A. Jiang, J. Chen, and P. Luo, Face tracing based geographic
    routing in nonplanar wireless networks, in IEEE INFOCOM, 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE