研究生: |
袁孝安 Yuan,Shiao-An |
---|---|
論文名稱: |
建立一個最小前進集合以用於無線隨意網路上的保證傳輸地理繞徑 Construction of Minimum Progress Set for Guaranteed Delivery of Geographic Routing in Wireless Ad-Hoc Networks |
指導教授: |
蔡明哲
Tsai,Ming-Jer |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2008 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 29 |
中文關鍵詞: | 無線隨意網路 、地理繞徑 、面繞徑 |
外文關鍵詞: | wireless ad-hoc networks, geographic routing, face routing |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於全球衛星定位系統的普及,有許多利用節點實際位址的無線隨意網路之地理繞徑協定被提出。其中像是GPSR、GFG、GOAFR+、GPVFR和FaceTrace,都能夠在繞徑遭遇凹節點時,利用邊傳送回到前進節點。
在這些類似GPSR的繞徑協定中,凹節點都不會有任何前進節點的資訊,所以這些凹節點經常會在邊傳送時使用錯誤的方向,使得繞徑的效率並不高。在這篇論文中,我們提出了Zone-MPS演算法,用以建立前進節點的集合,使得對於任何的終點都至少有一個前進節點在集合或鄰居內。並且提出了一個類似GPSR的繞徑協定: MPS-GRLF,在邊傳送時利用前進節點集合。實驗顯示,與GPSR、GFG、GOAFR+、GPVFR和FaceTrace相比,MPS-GRLF所得到的路徑是最短的。
Due to the popularity of the global positioning system, multiple geographic routing
protocols are proposed to route packets based on the physical addresses of nodes in
wireless ad-hoc networks. The GPSR-like routing protocols, such as GPSR, GFG,
GOAFR+, GPVFR, and FaceTrace, guarantee packet delivery by routing a packet
from a concave node to a progress node along the face boundary during perimeter
forwarding. In the existing GPSR-like routing protocols, however, a concave node
has no information about progress nodes; therefore, the concave node often forwards
the packet along the face boundary in a wrong direction during perimeter forwarding,
resulting in inefficient routing. In this paper, we first propose an algorithm, Zone-
MPS, to construct the progress set of a node, such that for any destination at least
one progress node is in the progress set or the neighbor set of the node. Subsequently,
a GPSR-like routing protocol, MPS-GRLF, is proposed to route a packet based on
progress sets during perimeter forwarding. Simulations show that MPS-GRLF conducts
a shorter routing path, as compared to GPSR, GFG, GOAFR+, GPVFR, and
FaceTrace.
[1] H. Takagi and L. Kleinrock, “Optimal transmission ranges for randomly distributed
packet radio terminals,” IEEE Transactions on Communications, vol.
32, pp. 246257, 1984.
[2] E. Kranakis, H. Singh, and J. Urrutia, Compass routing on geometric networks,
in CCCG, 1999.
[3] I. Stojmenovic and X. Lin, Loop-free hybrid single-path/flooding routing algorithms
with guaranteed delivery for wireless networks, IEEE Transactions on
Parallel and Distributed Systems, vol. 12, pp. 10231032, 2001.
[4] I. Stojmenovic, Position-based routing in ad hoc networks, IEEE Communications
Magazine, vol. 40, pp. 128134, 2002.
[5] N. Ahmed, S. Kanhere, and S. Jha, The holes problems in wireless sensor networks:
A survey, ACM Sigmobile Mobile Computing and Communication Review,
vol. 9, pp. 418, 2005.
[6] Q. Fang, J. Gao, and L. J. Guibas, Locating and bypassing routing holes in
sensor networks, in IEEE INFOCOM, 2004.
[7] S. Subramanian, S. Shakkottai, and P. Gupta, Optimal geographic routing for
wireless networks with near-arbitrary holes and traffic, in IEEE INFOCOM,
2008.
28
BIBLIOGRAPHY 29
[8] Z. Jiang, J. Ma, W. Lou, and J.Wu, An information model for geographic greedy
forwarding in wireless ad-hoc sensor networks, in IEEE INFOCOM, 2008.
[9] B. Karp and H. Kung, GPSR: Greedy perimeter stateless routing for wireless
networks, in ACM MOBICOM, 2000.
[10] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia, Routing with guaranteed
delivery in ad hoc wireless networks, ACM Wireless Networks, vol. 7, pp. 609616,
2001.
[11] F. Kuhn, R.Wattenhofer, Y. Zhang, and A. Zollinger, Geometric ad-hoc routing:
Of theory and practice, in ACM PODC, 2003.
[12] B. Leong, S. Mitra, and B. Liskov, Path vector face routing: Geographic routing
with local face information, in IEEE ICNP, 2005.
[13] H. Frey and I. Stojmenovic, On delivery guarantees of face and combined greedyface
routing in ad hoc and sensor networks, in ACM MOBICOM, 2006.
[14] F. Zhang, H. Li, A. Jiang, J. Chen, and P. Luo, Face tracing based geographic
routing in nonplanar wireless networks, in IEEE INFOCOM, 2007.