研究生: |
王聖夫 Wang, Sheng-Fu |
---|---|
論文名稱: |
近紅外異配位與均配位鉑金屬錯合物之製備、 光物理性質探討及 OLED 上的應用 Near-Infrared of Hetero and Homoleptic Platinum(II) complexes: Synthesis, Characterization and Applications in OLED |
指導教授: |
季昀
Chi, Yun |
口試委員: |
林皓武
Lin, Hao-Wu 徐秀福 Hsu, Hsiu-Fu |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 138 |
中文關鍵詞: | 近紅外 、鉑 、有機發光二極體 |
外文關鍵詞: | NIR, Pt, OLED |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有機發光二極體 (OLED) 具高亮度以及發光效率,可作為新一代的顯示器與照明元件,未來也能夠推至近紅外光的應用範圍,如軍事,醫療與生物技術等。2017年,實驗室團隊發表一系列近紅外鉑金屬錯合物,最大放光波長 (λmax) 在740 nm,同時具有81% 的超高量子產率,製備成元件後也有相當優越的表現。
為了達到更紅的發光,在本論文中將延續成功的設計理念,開發高度平面性的異配位與均配位鉑金屬錯合物,希望藉由分子間產生的堆疊效應,使錯合物電荷轉移路徑主要為 MMLCT (Metal-Metal-to-Ligand Charge Transfer),使放光波長得以超過800 nm,甚至900 nm。在光物理數據方面,本文中的錯合物λmax可長達950 nm,量子產率 (quantum yield, Φ) 最高達到近18 %;元件應用也有不錯的結果。
Organic light emitting diodes (OLED) with superb emission efficiencies in visible spectral region have been achieved, and the Near Infrared (NIR) -emitting OLED are also started to gain significant attention. NIR illumination can be applied to military, therapeutic use and biotechnology. Our group developed a series of NIR emitting Pt(II) complexes with emission λmax = 740 nm and ultra high quantum yield (81%) in 2017. They are also superior in devices performance.
To pursue emitters showing longer emission wavelengths, we extend our original design concepts and turn to develop both homoleptic and heteroleptic Pt (II) complexes bearing pyridinyl (or pyrazinyl) pyrimidinato class of chelates. It is expected that the resulting well-aligned molecular stacking in solid state will induce the metal-metal-to-ligand charge transfer (MMLCT) transition upon excitation, extanding the emission λmax beyond 900 nm. One best Pt(II) complex shows emission peak max. λmax = 950 nm and with Q.Y. = 18%, from which we have fabricated NIR-emitting OLED exhibiting record-breaking high performances.
1. A. Bernanose, Br. J. Appl. Phys., 1955, 6, S54-S56
2. M. Pope, H. P. Kallmann, P. Magnante, J. Chem. Phys., 1963, 38, 2042.
3. C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett., 1987, 51, 913.
4. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature, 1990, 347, 539
5. 陳金鑫, 黃孝文, OLED有機電激發光材料與元件, 五南圖書出版, 2005
6. J. Wang, N. Chopra, International Society for Optics and Photonics, 2013
7. S. H. Ko, Organic Light Emitting Diode - Material, Process and Devices, 2011
8. U. D. CHEMWiki.
9. Y. Tao, C. Yang, J. Qin, Chem. Soc. Rev., 2011, 40, 2943
10. H. Xu, R. Chen, Q. Sun, W. Lai, Q. Su, W. Huang, X. Liu, Chem. Soc. Rev., 2014, 43, 3259-3302.
11. B. Minaev, G. Baryshnikov, H. Agren, Phys. Chem. Chem. Phys. 2014, 16, 1719-1758.
12. Y. Chi, P.-T. Chou, Chem. Soc. Rev. 2010, 39, 638-655.
13. C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett. 2001, 79, 2082.
14. A. Barbieri, E. Bandini, F. Monti, V. K. Praveen, N. Armaroli, Top. Curr. Chem., 2016, 374, 47.
15. B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, Neoplasia 2000, 2, 26-40.
16. J. B. Reece, L. A. Urry, M. L. Cain, S. A. Wasserman, P. V. Minorsky, R. B. Jackson, Campbell Biology 9th Ed.
17. C. F. Johnson, C. S. Brown, R. M. Wheeler, J. C. Sager, D. K. Chapman, G. F. Deitzer, Photochemistry and Photobiology, 1996, 63, 238-242.
18. C. Mari, V. Pierroz, S. Ferrarib, G. Gasser, Chem. Sci., 2015, 6, 2660-2686.
19. R. Englman, J. Jortner, Molecular Phys. 1970, 18, 145-164.
20. A. Mishra, R. K. Behera, P. K. Behera, B. K. Mishra, G. B. Behera, Chem. Rev. 2000, 100, 1973-2012.
21. N. S. James, Y. Chen, P. Joshi, T. Y. Ohulchanskyy, M. Ethirajan, M. Henary, L. Strekowsk, R. K Pandey, Theranostics, 2013, 3, 692-702.
22. X. Peng, F. Song, E. Lu, Y. Wang, W. Zhou, J. Fan, Y. Gao, J. Am. Chem. Soc. 2005, 127, 4170-4171.
23. G. L. Silva, V. Ediz, D. Yaron, B. A. Armitage, J. Am. Chem. Soc., 2007, 129, 5710-5718.
24. Definition of indocyanine green, National Cancer Institute.
25. A. Loudet, K. Burgess, Chem. Rev. 2007, 107, 4891-4932
26. G. Ulrich, R. Ziessel, A. Harriman, Angew. Chem. Int. Ed. 2008, 47, 1184-1201.
27. T. Sarma, P. K. Panda, J.-i. Setsune, Chem. Commun. 2013, 49, 9806-9808.
28. L. Zeng, C. Jiao, X. Huang, K.-W. Huang, W.-S. Chin, J. Wu, Org. Lett. 2011, 13, 6026-6029.
29. A. Harriman, R. J. Hosie, J. Chem. Soc. Faraday Trans. 2, 1981, 77, 1695-1702.
30. A. Harriman, J. Chem. Soc. Faraday Trans. 1, 1982, 78, 2727-2734.
31. N. Armaroli, F. Diederich, L. Echegoyen, T. Habicher, L. Flamigni, G. Marconia, N. J. FrancÓois, New J. Chem., 1999, 23, 77-83.
32. K. Koren, S. M Borisov, R. Saf, I. Klimant, Eur. J. Inorg. Chem., 2011, 10, 1531-1534.
33. X. S. Ke, H. Zhao, X. Zou, Y. Ning, X. Cheng, H. Su, J. L. Zhang, J. Am. Chem. Soc., 2015, 33, 10745-10752.
34. H. B. Xu, Z. N. Chen, Chinese Journal of Inorganic Chemistry, 2011, 10, 1887-1903.
35. Y. W. Yip, H.Wen, W. T. Wong, P. A. Tanner, K. L. Wong, Inorg. Chem.,2012, 13, 7013-7015.
36. B. Alpha, R. Ballardini, V. Balzani, J. M. Lehn, S. Perathoner, N. Sabbatini, Photochemistry and Photobiology, 1990, 52, 299-306.
37. W. P. Gillin, R. J. Curry, Appl. Phys. Lett., 1999, 74, 798.
38. H. Wei, G. Yu, Z. Zhao, Z. Liu, Z. Bian, C. Huang, Dalton Trans., 2013, 42, 8951-8960.
39. J. L. Liao, Y Chi, S. H. Liu, G. H. Lee, P. T. Chou, H. X. Huang, Y. D. Su, C. H. Chang, J. S. Lin, M. R. Tseng, Inorg. Chem., 2014, 17, 9366-9374.
40. J. L. Liao, Y. Chi, C. Chi Yeh, H. C. Kao, C. H. Chang, M. A. Fox, P. J. Low, G.H. Lee, J. Mater. Chem. C, 2015, 3, 4910-4920.
41. J. Xue, L. Xin, J. Hou, L. Duan, R. Wang, Y. Wei, J. Qiao, Chem. Mater. 2017, 29, 4775-4782.
42. M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature, 1998, 395, 151-54.
43. J. Brooks, Y. Babayan, S. Lamansky, P. I. Djurovich, I. Tsyba, R. Bau, M. E. Thompson, Inorg. Chem., 2002, 41, 3055-3066.
44. G. Li, A. Wolfe, J. Brooks, Z. Q. Zhu, Jian Li, Inorg. Chem., 2017, 56, 82448256.
45. H. Xiang, J. Cheng, X. Ma, X. Zhou, J. J. Chruma, Chem. Soc. Rev., 2013, 42, 6128 – 6185.
46. S. Y. Chang, J. Kavitha, S. W. Li, C. S. Hsu, Y Chi, Y. S. Yeh, P. T. Chou, G. H. Lee, A. J. Carty, Y. T. Tao,C. H. Chien, Inorg. Chem., 2006, 45, 137 – 146.
47. Q. Wang, I. W. H. Oswald, X. Yang, G. Zhou, H. Jia, Q. Qiao, Y. Chen, J. Hoshikawa-Halbert, B. E. Gnade, Adv. Mater., 2014, 26, 8107-8113.
48. L.-M. Huang, G.-M. Tu, Y. Chi, W.-Y. Hung, Y.-C. Song, M.-R. Tseng, P.-T. Chou, G.-H. Lee, K. T. Wong, S.-H. Cheng, W.-S. Tsai, J. Mater. Chem. C, 2013, 1, 7582-7592.
49. M. Cocchi, J. Kalinowski, D. Virgili, J. A. G. Williams, Appl. Phys. Lett. 2008, 92, 113302.
50. K. R. Graham, Y. Yang, J. R. Sommer, A. H. Shelton, K. S. Schanze, J. Xue, J. R. Reynolds, Chem. Mater. 2011, 23, 5305-5312.
51. W. R. Browne, J. G. Vos, Coordination Chemistry Reviews, 2001, 219 – 221, 761–787.
52. C. C. Tong, K. C. Hwang, J. Phys. Chem. C, 2007, 111, 3490-3494.
53. K. T. Ly, R.-W. Chen-Cheng, H.-W. Lin, Y.-J. Shiau, S.-H. Liu, P.-T. Chou, C.-S. Tsao, Y.-C. Huang, Y. Chi, Nat. Photon. 2017, 11, 63-68.
54. M. W. Wallasch, D. Weismann, C. Riehn, S. Ambrus, G. Wolmershäuser, A. Lagutschenkov, G. N. Schatteburg, H. Sitzmann, Organometallics, 2010, 29, 806-813.
55. H, Ozawa, T, Kuroda, S, Harada, H, Arakawa, Eur. J. Inorg. Chem., 2014, 4734-4739.
56. M. Schlosser, F. Cottet, Eur. J. Org. Chem., 2002, 4181-4184.
57. M. Darabantu, L. Boully, A. Turck, N. Ple´, Tetrahedron, 2005, 61, 2897-2905.
58. J. S. Debenham, C. M. Duggan, M. J. Clements, T. F. Walsh, J. T. Kuethe, M. Reibarkh, S. P. Salowe, L. M. Sonatore, R. Hajdu, J. A. Milligan, D. M. Visco, D. Zhou, R. B. Lingham, D. Stickens, J. A. DeMartino, X. Tong, M. Wolff, J. Pang, R. R. Miller, E. C. Sherer, J. J. Hale, J. Med. Chem., 2016, 59, 11039-11049.
59. E. Blaise, A. E. Kümmerle, H. Hammoud, J. X. Araújo-Júnior, F. Bihel, J. J. Bourguignon, M. Schmitt, J. Org. Chem., 2014, 79, 10311-10322.
60. A. Coelho, E. Sotelo, H. Novoa, O. M. Peeters, N. Blatonb, E. Raviña, Tetrahedron, 2004, 60 12177-12189.
61. H. Samouei, M. Rashidi, F. W. Heinemann, J. IRAN CHEM. SOC., 2014, 11, 1207.
62. A. Esmaeilbeig, H. Samouei, S. Abedanzadeh, Z. Amirghofran, J. Organomet. Chem., 2011, 20, 3135-3142.
63. H. Samouei, M. Rashidi, F. W. Heinemann, J. Iran. Chem. Soc., 2014, 11, 1207-1216.
64. C. P. Newman, K. C. Green, G. J. Clarkson, G. W. V. Cave, W. Erringtonam, J. P. Rourke, Dalton Trans., 2007, 3170-3182.
65. G. K. Anderson, R. J. Cross, Chem. Soc. Rev., 1980, 9, 185-215.
66. A. Hildebrand, I. Sárosi, P. Lönnecke, L. Silaghi-Dumitrescu, M. B. Sárosi, I. Silaghi-Dumitrescu, E. Hey-Hawkins, Inorg. Chem., 2012, 51, 7125-7133.