簡易檢索 / 詳目顯示

研究生: 葉家和
Yeh, Chia-He
論文名稱: 電液動驅動式低剪應力微型流式細胞儀
An Electrohydrodynamically Driven Actuator with Low Shear Stress for Micro Flow Cytometry
指導教授: 劉承賢
Liu, Cheng-Hsien
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 78
中文關鍵詞: 流式細胞儀流體聚焦效應電滲流剪應力
外文關鍵詞: Flow cytometry, Hydrodynamic focusing, Electroosmosis flow, Shear stress
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 流式細胞儀是現在臨床醫療、生物醫學研究上常用且重要的工具,唯其造價非常昂貴、體積龐大,結合微機電技術發展微型流式細胞儀將大幅降低其造價,屆時微型流式細胞儀即可普及並有利於各研究、學術單位。在更進一步的研究中,這幾年來又興起了幹細胞療法與相關進一步的研究,相較於一般細胞,幹細胞有更為脆弱、敏感的特性,流式細胞儀提供的高篩選速度雖相當便利,但對於相對較脆弱細胞、幹細胞或他種貴重、稀少細胞而言,大型傳統流式細胞儀可能對其具有刺激性或潛在的傷害性。
    本研究提供一新型流式細胞技術,相較於一般傳統大型、或傳統微型流式細胞儀設計原理,我們的設計產生的剪應力明顯較低,若過大的剪應力作用在細胞膜上可能會造成細胞膜破損並傷害細胞,相關幹細胞的研究中也指出,某些特定幹細胞(ex: MSC, Mesenchymal Stem Cell)受剪應力作用後將會改變其分化趨勢與生長情況,可見剪應力太大將可能存在對篩選細胞的潛在影響,而長年來流式細胞技術中多採用流體聚焦效應(Hydrodynamic Focusing),此原理中必定存在一較高的流速差來達到較佳的聚焦效果,本設計大幅降低了聚焦所需的流速差,從以往可能的流速比1:25(樣本流:鞘流)至1:70或更高比大幅降低至約1:1,流速差越小造成的剪應力也將越小,潛在的可能影響也將越小。 另外,我們也去除了長年來採用的外接注射幫浦與噴嘴(Nozzle)結構,除了增加方便性外,也避免了一些對細胞可能存在的潛在影響。我們提出一創新方法給相關研究一個新的思考與設計方向。


    Flow cytometry is a standard and important tool for clinical medicine and research in biology. However, price of this machine is expensive and it also takes a lot of space. Thus, MEMS fabrication is used to lower down the price and be able to make flow cytometry affordable for labs and research institutes. Besides, recent advanced research about stem cell therapy indicates that some specific kind of stem cells are quite sensitive. Although flow cytometry is convenient for all cells in sorting, the high speed sorting also includes higher possible side stimulation or effects on both sensitive normal cells and stem cells.

    This research topic proposes a novel flow cytometry design. Compared to other designs, we have lower shear stress. Shear stress implies on cell membrane may cause potential extra effects or even damages. Some research also indicates that some stem cells, such as MSC (Mesenchymal Stem Cell), is practically sensitive to shear stress and other mechanical loading. Under some shear stress stimulation, MSC may either change into another cell or change its physiology. Therefore, we also want to avoid this kind of influence while sorting cells. Various flow cytometries have been developed by taking advantages of hydrodynamic focusing as the main working principle to focus the cells in sample flow. Using conventional hydrodynamic focusing effect, a larger velocity ratio (or “flow rate ratio”), such as 1:25 (sample flow : sheath flow) to 1:70 or even higher, is required. In our design, we are able to lower the required velocity ratio down to near 1:1. This significantly removes the influence and potential damage from the shear stress for sorted cells. Besides, we get rid of the conventional used syringe pump and nozzle-shape flow channel. This makes chip work more convenient and also avoids the sudden changes in pressure and fluid velocity, which might potentially either damage or badly affect the sorted cells. Here we propose a novel design and new aspect of thinking in future corresponding research.

    第一章 序 論 7 1.1 微機電系統(MEMS) 7 1.2 生醫晶片(Bio-chip)簡介 8 1.2.1 微陣列型晶片(Microarray) 9 1.2.2 微處理型晶片(Lab-on-a-chip) 10 1.3 文獻回顧 12 第二章 理論分析與晶片設計 20 研究動機 20 2.1 主要理論 21 2.1.1介電泳 (DEP, Dielectrophoresis) 21 2.1.2電滲流 (EOF, Electro-osmosis) 24 2.2 晶片設計 與 作動原理 27 2.3 設計模型模擬 33 第三章 製程規劃與實驗設計 36 3.1 製程規劃 36 第四章 實驗結果與討論 39 4.1 實驗架設與結果 39 4.2 與其他流式細胞儀的比較 44 4.2.1 一般大型流式細胞儀 44 4.2.2 一般微型流式細胞儀 52 4.2.3 本設計晶片的實驗數值與比較 57 4.3 深入討論:將剪應力留在”門外”! 62 4.4 深入討論:利用電滲流達到特殊的流體集中效果 64 4.4.1 額外的集中效果 64 4.4.2 與電滲流相反方向的流體效應 70 4.5 結論 73 參考文獻 75

    [1] NSC 2000 MEMS基礎技術人才培訓班Training Manual
    [2] “http://www.analog.com/” Analog Device Co. ADXL
    [3] “http://www.ti.com.tw/” Texas Instruments, Digital Mirror Device
    [4] “http://www.siliconlight.com/” Grating Light Valve™ Technology
    [5] 生物晶片(Bio-chip)專題研究,1999, 楊文光、蔡世峰、陳培哲、白果能, 陳健銘, 基因大狂潮, 牛頓出版公司
    [6] “Miniaturized Total Analysis System: A Novel Concept for Chemical Sensors”, 1990, Sensors and Actuators B1, pp224-248
    [7] “Microfluidic Plastic Capillaries on Silicon Substrates: A New Inexpensive Technology for Bioanalysis Chips”, Proc. IEEE MEMS’97, pp 311-316, 1997. P.F. Man, D. K. Jones, and C. H. Mastrangelo
    [8] “Microreactor with Integrated Static Mixer and Analysis System”,Proceeding of Micro Total Analysis System Conference (μTAS ’94), Nov. pp21-22, 1994. Mensinger, H. Richter, T. Hessel, V. Dopper
    [9] 生物技術概論 高立圖書有限公司 陳洸艟, 汪蕙蘭, 林宗新
    [10] 生物技術 九州圖書文物有限公司 田蔚城
    [11] ”http://www.cytomation.com
    [12] ”http://www.cyto.purdue.edu”
    [13] Micromachined Transducers Sourcebook. New York: McGraw-Hill, 1998. G. T.A. Kovacs
    [14] “Photo-electric technique for the counting of microscopical cells,” 1934. A. Moldavan
    [15] “A device for counting small particles suspended in a fluid through a tube,” Nature 171, pp. 37-38. 1953. P.J. Crosland-Taylor
    [16] “High speed automatic blood cell counter and cell size analyzer,” Proc. Natl. El. Conf. 12, pp. 1034-1040, 1956. W. H. Coulter
    [17] “Rapid simultaneous measurementof DNA, protein and cell volume in single cells from large mammaliancell populations,” J. Cell Biol., Vol. 59, pp. 766, 1973. H. A. Crissman and J. A. Steinkamp
    [18] “Development of a microfluidic device for fluorescence activated cell sorting,” J. Micromech. Microeng. Vol. 12, pp. 486-494, 2002. J. Kruger, K. Singh, A. O’Neill, C. Jackson, A. Morrison, and P. O’Brien
    [19] “The application of flow cytometry to histocompatibility testing,” Transplant Immunology, Vol. 8, pp. 3-15, 2000. T. Horsburgh, S. Martin, and A. J. Robson
    [20] “A development of micro sheath flow cytometer,“ Proc. 4th IEEE MEMS, pp.259-264, 1991. R. Miyake, H. Ohki, I. Yamazaki, and R. Yabe
    [21] “Design, Fabrication and Characterization of a Novel Micromachined Flow Cytometer”,2002, NCKU, Bao-Herng Hwei, Gwo-Bin Lee
    [22] “Novel Micro T-Switches for Cell Sorting Applications”, 2001, NTHU, Chen-Ta Ho, Cheng-Hsien Liu
    [23] “Passive Gradient Generator and Cell Manipulation Integrated with Dielectrophoresis for Chemotaxis Study” , 2007, NTHU, Kuo-Chuan Huang, Cheng-Hsien Liu
    [24] Lab Chip 4 337 , 2004, L. Zhu, Q. Zhang, H.H. Feng, S. Ang, F.S. Chau, W.T. Liu
    [25] IEEE Trans. Nanobiosci. 3 251 , 2004, H. Mohamed, L.D. McCurdy, D.H. Szarowski, S. Duva, J.N. Turner, M. Caggana
    [26] Lab Chip 3 62 , 2003, J. Moorthy, D.J. Beebe
    [27] Science 304 987 , 2004, L.R. Huang, E.C. Cox, R.H. Austin, J.C. Sturm
    [28] Lab Chip 4 425, 2004. A. Khademhosseini, J. Yeh, S. Jon, G Eng, K.Y. Suh, J.A. Burdick, R. Langer
    [29] Anal. Chem. 76 6693 , 2004, H. Tani, K. Maehana, T. Kamidate
    [30] Langmuir 19 9855, 2003, A. Revzin, R.G. Tompkins, M. Toner
    [31] Microelectromech. S 14 857, 2005, N. Chronis, L.P. Lee, J.
    [32] Anal. Chem. 75 2117, 2003. J. Lahann, M. Balcells, H. Lu, T. Rondon, K.F. Jensen, R. Lange
    [33] Lab Chip 3 5, 2003, B.J Kirby, A.R. Wheeler, R.N. Zare, J.A. Fruetel, T.J. Shepodd
    [34] Biomaterials 23 929, 2002, J.D. Cox, M.S. Curry, S.K. Skirboll, P.L. Gourley, D.Y. Sasaki
    [35] “Polysilicon Microgripper” , Tech. Dig., IEEE Solid-State Sensor and Actuator Workshop, 48-51, Jun, 1990, C.J. Kim, A. P. Pisano, R. S. Muller, M. G. Lim
    [36] “Silicon-Processed Overhanging Microgripper” , J. MEMS, 1(3), 31-36, Mar 1992, C. J. Kim, A. P. Pisano, R. S. Muller, M. G. Lim
    [37] “Dielectrophoretic separation and manipulation of live and heat-treat cells of Listeria on microfabricated devices with interdigitated electrodes” Sensors and Actuator B 86 215-221, 2002, Haibo Li and Rashid Bashir
    [38] “Microfluidic Switch for Embryo and Cell Sorting,”, 2003, 2E65.P, Transducers
    [39] “http://www.physics.uq.edu.au/people/nieminen/trapping.html”, C.C. Chen, and S. Zappe
    [40] IEEE Engineering in Medicine and Biology Magazine, 33-42, Nov/Dec 2003, T. B. Jones
    [41] “The Fabrication and Study of Chip with Micro Cylindrical Post Array for Separating Micro Particles by Dielectrophoresis”, 2006, Wen-Hsiang Han, Ching-Hua Wei, Southern Taiwan University.
    [42] “Streaming Dielectrophoresis for Continuous-Flow Micro-Fluidic Devices, ” IEEE Engineering Medicine and Biology Magazine, Nov./Dec., pp.75-85, 2003. Eric B.Cummings
    [43] Dielectrophoresis , Cambridge University Press,Cambridge,1978. H. A. Pohl
    [44] “Dielectrophoretic Trapping without Embedded Electrodes,” Proc. SPIE Conf. Micromachining and Microfabrication, Vol. 4177, pp. 164-173, 2000. E.B.Cummings,A.K.Singh
    [45] “Dielectrophoresis in Microchips Containing Arrays of Insulating Posts,” Anal.Chem., Vol. 75, pp. 4724-4731, 2003, Eric B.Cummings,Anup K.Singh
    [46] “Dielectrophoretic Concentration and Separation of Live and Dead Bacteria in an Array of Insulators,” Anal.Chem., Vol. 76, pp.1571-1579, 2004, Blanca H. Lapizco-Encinas, Blake, A.Simmons, Eric, B.Cummings, Yolanda Fintschenko
    [47] "The Effect of Shear Stress on Stromal Cells", 2002, NDHU, Tzyy-Wen Chiou, Hsiu-Fan Kang
    [48] "Cyclic flexure and laminar flow synergistically accelerate mesenchymal stem cell-mediated engineered tissue formation: Implications for engineered heart valve tissues" George C. Engelmayr Jr, Virna L. Sales, John E. Mayer Jr., Michael S. Sacks
    [49] "Dynamic compression can inhibit chondrogenesis of mesenchymal stem cells" S.D. Thorpe, C.T. Buckleya, T. Vinardell, F.J. O’Briena b, V.A. Campbell, and D.J. Kelly. 2008 及 "Dynamic compression influences the biochemical response of human mesenchymal stem cells cultured in agarose constructs" C. Catuogno, T. T. Chowdhury, D.L. Bader, D.A. Lee. 2005

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE