研究生: |
徐鈺惠 Hsu, Yu-Hui |
---|---|
論文名稱: |
阿拉伯芥轉譯通讀基因之預測與分析 Prediction and analysis of translational termination readthrough in Arabidopsis |
指導教授: |
林彩雲
Lin, Tsai-Yun |
口試委員: |
黃鎮剛
Hwang, Jenn-Kang 莊永仁 Chuang, Yung-Jen |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 74 |
中文關鍵詞: | 阿拉伯芥 、轉譯通讀 |
外文關鍵詞: | Arabidopsis, readthrough |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
終止密碼子的轉譯通讀會產生額外的羧基端胜肽,造成終止密碼轉譯通讀的mRNA訊號在植物中的研究較少。造成終止密碼的轉譯通讀現象的mRNA序列在各物種間可能有特徵上的共通點,這些共同特徵可以用來預測可能會發生終止密碼子轉譯通讀的基因。藉由黃鎮剛教授和黃存操所編寫的電腦程式,我們分析阿拉伯芥基因的終止密碼子前後的序列,篩選出547個可能會發生終止密碼子轉譯通讀的基因,並利用雙報導基因NAN-GUS系統短暫表現在阿拉伯芥的原生質體檢測轉譯通讀的效率。由於菸草鑲嵌病毒有轉譯通讀現象的UAG終止密碼子在阿拉伯芥細胞有顯著的轉譯通讀效率,我們比較這547個基因的終止密碼子前後各12個鹼基(不包含終止密碼子),篩選出10個與菸草鑲嵌病毒UAG終止密碼子前後序列有50%以上相似度的阿拉伯芥基因。以NAN-GUS系統檢測,發現其中7個有轉譯通讀現象,但在阿拉伯芥中未發現實際存在的mRNA。由結果得知,若終止密碼子前後序列與菸草鑲嵌病毒UAG終止密碼子前後序列相似,有發生轉譯通讀現象的機會。我們重新設定準則分析阿拉伯芥基因,篩選出9個可能有轉譯通讀現象的基因,這些基因與菸草鑲嵌病毒UAG終止密碼子前後12個鹼基序列有50%相似(不包含終止密碼子),只有一種基因模組,在足夠長(120個鹼基)的三端非轉譯區域外另有一終止密碼子,且經由轉譯通讀,在兩終止密碼子之間可能轉譯出額外的功能性羧基端胜肽。這些實驗結果提供我們分析阿拉伯芥中可能會發生終止密碼子轉譯通讀基因的鑑定訊息。
Termination codon readthrough is utilized for extension of C-terminal protein domain. Signals in mRNA that promote translation readthrough have not been characterized in plant. The surrounding context of readthrough stop codon may contain conserved sequence feature and can be utilized for prediction of potential readthrough candidates. Using computational method designed by Dr. JK Huang and TT Huang, we analyzed the stop codon context in Arabidopsis genes and identified 547 potential candidates. The desired sequence was inserted in NAN-GUS dual reporter system and transiently expressed in Arabidopsis protoplasts to analyze readthrough efficiency. The tobacco mosaic virus (TMV) leaky UAG stop codon showed significant readthrough in Arabidopsis protoplasts. Thus the sequence context containing 12 nucleotides flanking both sides of the first stop codon of each candidate was compared to the context of the TMV leaky UAG stop codon. Ten candidates were selected with > 50% sequence identity, and readthrough activity was detected in seven sequences. We further analyzed Arabidopsis database using 5 criteria including > 50% identity to the context of TMV leaky UAG stop codon, containing a single gene model, having an in frame stop codon in 3' UTR more than 120 nucleotides, and extending a functional domain, and 9 candidates were extracted. This study provides information for identifying potential readthrough genes in Arabidopsis.
Angenon G, Van Montagu M, Depicker A, 1990. Analysis of the stop codon context in plant nuclear genes. FEBS letters 271, 144-6.
Atkins JF, Gesteland RF, Reid BR, Anderson CW, 1979. Normal tRNAs promote ribosomal frameshifting. Cell 18, 1119-31.
Atkins JF, Wills NM, Loughran G, Wu CY, Parsawar K, Ryan MD, Wang CH, Nelson CC, 2007. A case for "StopGo": reprogramming translation to augment codon meaning of GGN by promoting unconventional termination (Stop) after addition of glycine and then allowing continued translation (Go). Rna 13, 803-10.
Austin RS, Provart NJ, Cutler SR, 2007. C-terminal motif prediction in eukaryotic proteomes using comparative genomics and statistical over-representation across protein families. BMC genomics 8, 191.
Baerenfaller K, Grossmann J, Grobei MA, Hull R, Hirsch-Hoffmann M, Yalovsky S, Zimmermann P, Grossniklaus U, Gruissem W, Baginsky S, 2008. Genome-scale proteomics reveals Arabidopsis thaliana gene models and proteome dynamics. Science 320, 938-41.
Beier H, Barciszewska M, Krupp G, Mitnacht R, Gross HJ, 1984. UAG readthrough during TMV RNA translation: isolation and sequence of two tRNAs with suppressor activity from tobacco plants. The EMBO journal 3, 351-6.
Beier H, Grimm M, 2001. Misreading of termination codons in eukaryotes by natural nonsense suppressor tRNAs. Nucleic acids research 29, 4767-82.
Bergstrom DE, Merli CA, Cygan JA, Shelby R, Blackman RK, 1995. Regulatory autonomy and molecular characterization of the Drosophila out at first gene. Genetics 139, 1331-46.
Bertram G, Innes S, Minella O, Richardson J, Stansfield I, 2001. Endless possibilities: translation termination and stop codon recognition. Microbiology 147, 255-69.
Bohnert HJ, Sheveleva E, 1998. Plant stress adaptations--making metabolism move. Current opinion in plant biology 1, 267-74.
Brault V, Van Den Heuvel JF, Verbeek M, Ziegler-Graff V, Reutenauer A, Herrbach E, Garaud JC, Guilley H, Richards K, Jonard G, 1995. Aphid transmission of beet western yellows luteovirus requires the minor capsid read-through protein P74. The EMBO journal 14, 650-9.
Brierley I, 1995. Ribosomal frameshifting viral RNAs. The Journal of general virology 76 (Pt 8), 1885-92.
Brown CM, Dalphin ME, Stockwell PA, Tate WP, 1993. The translational termination signal database. Nucleic acids research 21, 3119-23.
Brown CM, Dinesh-Kumar SP, Miller WA, 1996. Local and distant sequences are required for efficient readthrough of the barley yellow dwarf virus PAV coat protein gene stop codon. Journal of virology 70, 5884-92.
Brown CM, Stockwell PA, Trotman CN, Tate WP, 1990. Sequence analysis suggests that tetra-nucleotides signal the termination of protein synthesis in eukaryotes. Nucleic acids research 18, 6339-45.
Campbell JH, O'donoghue P, Campbell AG, Schwientek P, Sczyrba A, Woyke T, Soll D, Podar M, 2013. UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota. Proceedings of the National Academy of Sciences of the United States of America 110, 5540-5.
Cardno TS, Poole ES, Mathew SF, Graves R, Tate WP, 2009. A homogeneous cell-based bicistronic fluorescence assay for high-throughput identification of drugs that perturb viral gene recoding and read-through of nonsense stop codons. Rna 15, 1614-21.
Cassan M, Rousset JP, 2001. UAG readthrough in mammalian cells: effect of upstream and downstream stop codon contexts reveal different signals. BMC molecular biology 2, 3.
Chambers I, Frampton J, Goldfarb P, Affara N, Mcbain W, Harrison PR, 1986. The structure of the mouse glutathione peroxidase gene: the selenocysteine in the active site is encoded by the 'termination' codon, TGA. The EMBO journal 5, 1221-7.
Davis JP, Youssef NH, Elshahed MS, 2009. Assessment of the diversity, abundance, and ecological distribution of members of candidate division SR1 reveals a high level of phylogenetic diversity but limited morphotypic diversity. Applied and environmental microbiology 75, 4139-48.
Dreher TW, Miller WA, 2006. Translational control in positive strand RNA plant viruses. Virology 344, 185-97.
Dubrovina AS, Kiselev KV, Zhuravlev YN, 2013. The role of canonical and noncanonical pre-mRNA splicing in plant stress responses. BioMed research international 2013, 264314.
Feng YX, Copeland TD, Oroszlan S, Rein A, Levin JG, 1990. Identification of amino acids inserted during suppression of UAA and UGA termination codons at the gag-pol junction of Moloney murine leukemia virus. Proceedings of the National Academy of Sciences of the United States of America 87, 8860-3.
Feng YX, Yuan H, Rein A, Levin JG, 1992. Bipartite signal for read-through suppression in murine leukemia virus mRNA: an eight-nucleotide purine-rich sequence immediately downstream of the gag termination codon followed by an RNA pseudoknot. Journal of virology 66, 5127-32.
Firth AE, Wills NM, Gesteland RF, Atkins JF, 2011. Stimulation of stop codon readthrough: frequent presence of an extended 3' RNA structural element. Nucleic acids research 39, 6679-91.
Gao X, Havecker ER, Baranov PV, Atkins JF, Voytas DF, 2003. Translational recoding signals between gag and pol in diverse LTR retrotransposons. Rna 9, 1422-30.
Gluick TC, Wills NM, Gesteland RF, Draper DE, 1997. Folding of an mRNA pseudoknot required for stop codon readthrough: effects of mono- and divalent ions on stability. Biochemistry 36, 16173-86.
Green L, Houck-Loomis B, Yueh A, Goff SP, 2012. Large ribosomal protein 4 increases efficiency of viral recoding sequences. Journal of virology 86, 8949-58.
Grentzmann G, Ingram JA, Kelly PJ, Gesteland RF, Atkins JF, 1998. A dual-luciferase reporter system for studying recoding signals. Rna 4, 479-86.
Halvey PJ, Liebler DC, Slebos RJ, 2012. A Reporter System for Translational Readthrough of Stop Codons in Human Cells. FEBS open bio 2, 56-9.
Harrell L, Melcher U, Atkins JF, 2002. Predominance of six different hexanucleotide recoding signals 3' of read-through stop codons. Nucleic acids research 30, 2011-7.
Hirosawa-Takamori M, Ossipov D, Novoselov SV, Turanov AA, Zhang Y, Gladyshev VN, Krol A, Vorbruggen G, Jackle H, 2009. A novel stem loop control element-dependent UGA read-through system without translational selenocysteine incorporation in Drosophila. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 23, 107-13.
Jungreis I, Lin MF, Spokony R, et al., 2011. Evidence of abundant stop codon readthrough in Drosophila and other metazoa. Genome research 21, 2096-113.
Kawakami K, Pande S, Faiola B, Moore DP, Boeke JD, Farabaugh PJ, Strathern JN, Nakamura Y, Garfinkel DJ, 1993. A rare tRNA-Arg(CCU) that regulates Ty1 element ribosomal frameshifting is essential for Ty1 retrotransposition in Saccharomyces cerevisiae. Genetics 135, 309-20.
Kochetov AV, Volkova OA, Poliakov A, Dubchak I, Rogozin IB, 2011. Tandem termination signal in plant mRNAs. Gene 481, 1-6.
Lao NT, Maloney AP, Atkins JF, Kavanagh TA, 2009. Versatile dual reporter gene systems for investigating stop codon readthrough in plants. PloS one 4, e7354.
Li G, Rice CM, 1993. The signal for translational readthrough of a UGA codon in Sindbis virus RNA involves a single cytidine residue immediately downstream of the termination codon. Journal of virology 67, 5062-7.
Lin MF, Carlson JW, Crosby MA, Matthews BB, Yu C, Park S, Wan KH, Schroeder AJ, Gramates LS, St Pierre SE, Roark M, Wiley KL, Jr., Kulathinal RJ, Zhang P, Myrick KV, Antone JV, Celniker SE, Gelbart WM, Kellis M, 2007. Revisiting the protein-coding gene catalog of Drosophila melanogaster using 12 fly genomes. Genome research 17, 1823-36.
Liu Q, Xue Q, 2004. Computational identification and sequence analysis of stop codon readthrough genes in Oryza sativa. Bio Systems 77, 33-9.
McCaughan KK, Brown CM, Dalphin ME, Berry MJ, Tate WP, 1995. Translational termination efficiency in mammals is influenced by the base following the stop codon. Proceedings of the National Academy of Sciences of the United States of America 92, 5431-5.
Mottagui-Tabar S, Isaksson LA, 1997. Only the last amino acids in the nascent peptide influence translation termination in Escherichia coli genes. FEBS letters 414, 165-70.
Mottagui-Tabar S, Isaksson LA, 1998. The influence of the 5' codon context on translation termination in Bacillus subtilis and Escherichia coli is similar but different from Salmonella typhimurium. Gene 212, 189-96.
Mottagui-Tabar S, Tuite MF, Isaksson LA, 1998. The influence of 5' codon context on translation termination in Saccharomyces cerevisiae. European journal of biochemistry / FEBS 257, 249-54.
Namy O, Duchateau-Nguyen G, Hatin I, Hermann-Le Denmat S, Termier M, Rousset JP, 2003. Identification of stop codon readthrough genes in Saccharomyces cerevisiae. Nucleic acids research 31, 2289-96.
Namy O, Duchateau-Nguyen G, Rousset JP, 2002. Translational readthrough of the PDE2 stop codon modulates cAMP levels in Saccharomyces cerevisiae. Molecular microbiology 43, 641-52.
Namy O, Hatin I, Rousset JP, 2001. Impact of the six nucleotides downstream of the stop codon on translation termination. EMBO reports 2, 787-93.
Napthine S, Yek C, Powell ML, Brown TD, Brierley I, 2012. Characterization of the stop codon readthrough signal of Colorado tick fever virus segment 9 RNA. Rna 18, 241-52.
Ohtsubo H, Kumekawa N, Ohtsubo E, 1999. RIRE2, a novel gypsy-type retrotransposon from rice. Genes & genetic systems 74, 83-91.
Pande S, Vimaladithan A, Zhao H, Farabaugh PJ, 1995. Pulling the ribosome out of frame by +1 at a programmed frameshift site by cognate binding of aminoacyl-tRNA. Molecular and cellular biology 15, 298-304.
Robinson DN, Cooley L, 1997. Examination of the function of two kelch proteins generated by stop codon suppression. Development 124, 1405-17.
Sato M, Umeki H, Saito R, Kanai A, Tomita M, 2003. Computational analysis of stop codon readthrough in D.melanogaster. Bioinformatics 19, 1371-80.
Shen Q, Chu FF, Newburger PE, 1993. Sequences in the 3'-untranslated region of the human cellular glutathione peroxidase gene are necessary and sufficient for selenocysteine incorporation at the UGA codon. The Journal of biological chemistry 268, 11463-9.
Skuzeski JM, Nichols LM, Gesteland RF, Atkins JF, 1991. The signal for a leaky UAG stop codon in several plant viruses includes the two downstream codons. Journal of molecular biology 218, 365-73.
Stahl G, Bidou L, Rousset JP, Cassan M, 1995. Versatile vectors to study recoding: conservation of rules between yeast and mammalian cells. Nucleic acids research 23, 1557-60.
Stansfield I, Tuite MF, 1994. Polypeptide chain termination in Saccharomyces cerevisiae. Current genetics 25, 385-95.
Steneberg P, Englund C, Kronhamn J, Weaver TA, Samakovlis C, 1998. Translational readthrough in the hdc mRNA generates a novel branching inhibitor in the Drosophila trachea. Genes & development 12, 956-67.
Steneberg P, Samakovlis C, 2001. A novel stop codon readthrough mechanism produces functional Headcase protein in Drosophila trachea. EMBO reports 2, 593-7.
Torabi N, Kruglyak L, 2012. Genetic basis of hidden phenotypic variation revealed by increased translational readthrough in yeast. PLoS genetics 8, e1002546.
Tork S, Hatin I, Rousset JP, Fabret C, 2004. The major 5' determinant in stop codon read-through involves two adjacent adenines. Nucleic acids research 32, 415-21.
Uno M, Ito K, Nakamura Y, 2002. Polypeptide release at sense and noncognate stop codons by localized charge-exchange alterations in translational release factors. Proceedings of the National Academy of Sciences of the United States of America 99, 1819-24.
Urban C, Zerfass K, Fingerhut C, Beier H, 1996. UGA suppression by 〖tRNA〗_CmCA^Trp occurs in diverse virus RNAs due to a limited influence of the codon context. Nucleic acids research 24, 3424-30.
Wenthzel AM, Stancek M, Isaksson LA, 1998. Growth phase dependent stop codon readthrough and shift of translation reading frame in Escherichia coli. FEBS letters 421, 237-42.
Williams I, Richardson J, Starkey A, Stansfield I, 2004. Genome-wide prediction of stop codon readthrough during translation in the yeast Saccharomyces cerevisiae. Nucleic acids research 32, 6605-16.
Wills NM, Gesteland RF, Atkins JF, 1991. Evidence that a downstream pseudoknot is required for translational read-through of the Moloney murine leukemia virus gag stop codon. PNAS 88, 6991-5.
Yamaguchi Y, Hayashi A, Campagnoni CW, Kimura A, Inuzuka T, Baba H, 2012. L-MPZ, a novel isoform of myelin P0, is produced by stop codon readthrough. The Journal of biological chemistry 287, 17765-76.
Yoo SD, Cho YH, Sheen J, 2007. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature protocols 2, 1565-72.
Yoshinaka Y, Katoh I, Copeland TD, Oroszlan S, 1985. Murine leukemia virus protease is encoded by the gag-pol gene and is synthesized through suppression of an amber termination codon. Proceedings of the National Academy of Sciences of the United States of America 82, 1618-22.
Zerfass K, Beier H, 1992. Pseudouridine in the anticodon GΨA of plant cytoplasmic tRNATyr is required for UAG and UAA suppression in the TMV-specific context. Nucleic acids research 20, 5911-8.
Zhouravleva G, Frolova L, Le Goff X, Le Guellec R, Inge-Vechtomov S, Kisselev L, Philippe M, 1995. Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. The EMBO journal 14, 4065-72.