研究生: |
陳楊晰 Chen, Yang-Hsi |
---|---|
論文名稱: |
掃描探針方法研究分子拉伸對共軛高分子導電性的影響 Study of the Effect of Molecular Stretching on the Conductivity of Conjugated Polymers Using Scanning Probe Techniques |
指導教授: |
楊長謀
Yang, Arnold C. M. |
口試委員: |
鄭智嘉
Cheng, Chi-Chia 官振豐 Kuan, Zhen-Feng |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 85 |
中文關鍵詞: | 共軛高分子 、光電高分子 、分子應力 |
相關次數: | 點閱:57 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年的研究顯示,共軛高分子薄膜在經過強烈單一方向拉伸後,共軛聚合物主鏈的扭轉運動會受限,這能夠抑制光激發電子態的自我捕獲現象( self-trapping ),導致材料光電量子效率顯著提升[1~4];我們認為此電子態與聚合物鏈的機械運動的耦合行為,很可能會影響到聚合物中電子激發態的導電性。因此在本實驗中,我們採用了光激發分子束縛方法,選擇了10% 聚苯乙烯 PS(polystryene)和共軛聚合物P3HT(poly[3-hexylthiophene-2,5-diyl), regioregular )的混合物製成薄膜。且利用非導電PS薄膜的在強力拉伸下會產生頸縮現象的特性,在雙層膜結構下對混摻PS的P3HT薄膜進行局部變形區域的拉伸,使其達到約400%的工程應變,並探討機械拉伸對導電性的影響。
為了方便觀察樣品電性,我們在P3HT薄膜上事先掺雜了5%的碘,並經由四點探針測量證實摻雜後樣品導電性顯著提高。樣品經過機械拉伸後,我們使用 SPM tuna( Peakforce Tunneling AFM)在固定偏壓下對P3HT膜進行單點電流的測量。發現局部變形區域內的導電性比變形區域外高出1.4~1.6倍,相差約為α~3%。這一結果與變形區增加的光電效率行為一致。接著分析在測量pf-tuna 時改變電極的施加方式使電壓以相對機械拉伸方向垂直或平行流經樣品來使電流以不同方向到達纖化區的結果來分析形變方向與薄膜表面電子運動方向之間的關聯性,以解釋對於拉伸方向而言不同電流流向時得到的訊號強度差異;並以改變樣品厚度的方式來觀察厚度效應對於樣品空間電荷激發程度所造成的影響。
Recent studies have shown that after undergoing intense uniaxial stretching, the twisting motion of the main chains in conjugated polymer films is restricted, which can suppress the phenomenon of self-trapping of photoexcited electronic states. This leads to a significant enhancement in the photoelectric quantum efficiency of the materials[1~4]. We hypothesize that the coupling behavior between this electronic state and the mechanical motion of the polymer chains could likely affect the conductivity of the excited electronic states within the polymer. Therefore, in this experiment, we employed the method of photoexcited molecular confinement to fabricate thin films from a mixture of 10% polystyrene (PS) and the conjugated polymer P3HT (poly[3-hexylthiophene-2,5-diyl], regioregular). Utilizing the characteristic necking phenomenon of non-conductive PS films under strong stretching, we applied localized deformation to the P3HT films mixed with PS in a bilayer structure, achieving approximately 400% engineering strain, to investigate the impact of mechanical stretching on conductivity.
To facilitate the observation of the electrical properties of the samples, we pre-doped the P3HT films with 5% iodine, and the enhanced conductivity of the doped samples was confirmed through four-point probe measurements. After mechanical stretching, we used SPM TUNA (PeakForce Tunneling AFM) to measure the single-point current of the P3HT film under a fixed bias voltage. It was found that the conductivity within the locally deformed area was 1.4~1.6 times higher than outside the deformation area, with a difference of approximately α~3%. This result is consistent with the behavior of increased photoelectric efficiency in the deformed area. Further analysis was conducted on the effect of changing the application mode of the electrodes during pf-TUNA measurements, altering the voltage direction to be perpendicular or parallel to the mechanical stretching direction across the sample, to analyze the relationship between the deformation direction and the direction of electron movement on the film surface. This was done to explain the difference in signal strength observed with different current flow directions relative to the stretching direction. Additionally, the effect of sample thickness on the degree of space charge excitation was observed by altering the thickness of the sample.
1. K. P. Tung, C. C. Chen; P. Lee, Y. W. Liu, T. M. Hong, K. C. Hwang, J. H. Hsu, J. D. White, A. C. M. Yang, ACS Nano 2011, 5, 7296-7302.
2. P. T. Chen, Y. W. Yang, G. Reiter, A. C. M. Yang, Polymer 2020, 204, 122753.
3. K. S. Shih, C. C. Chen, P.-T. Chen, Y. W. Yang, J. D. White, Y.-M. Chang, A. C. M. Yang, ACS Photonics 2015, 2, 33-42.
4. P. Lee, W. C. Li, B. J. Chen, C.-W. Yang, C. C. Chang, I. Botiz, G. Reiter, T. L. Lin, J. Tang, A. C.M. Yang, ACS Nano 2013, 7, 6658-6666.
5. I. M. Ward, Mechanical Properties of Solid polymers, 2nd ed. (john Wiley&Sons Press: New York 1983).
6. E. J. Kramer, L. L. Berger, Adv. Polym. Sci. 1990, 91/92, 1.
7. J. H. Lin, A. C. M. Yang, Macromolecules 2001,34, 3698.
8. E. J. Kramer, Adv. Polym. Sci. 1983 52/53, 1
9. A. N. Gent, In The Mechanics of fracture, AMD; (F. Erdogon, ed., ASME: New York 19, 55 1976).
10. A. C. M. Yang, R. C. Wang, M. S. Kunz, J. Polym. Sci., Polym. Phys. Ed, 1996, 34, 1141.
11. H. H. Kaush, Polymer Fracture, (Spring-Verlag: Heidel-berg, Germany 1978).
12. 蕭志郡, 清華大學材料系碩士論文, 奈米碳管表面接枝苯乙烯聚合體在聚苯乙烯薄膜內之奈米微觀機械行為研究 (2004).
13. C. H. Lin; A. C.-M. Yang, J. Mater. Sci. 2000, 35, 4231.
14. E. J. Kramer, Adv. Polym. Sci. 1983, 52/53, 1.
15. M. Kawagoe, M. Kitagawa, J. Polym. Sci.Polym. Phys. 1981, 19, 1423.
16. R. J. Fields; M. F. Ashby, Philos. Mag. 1976, 33, 33
17. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, J. Phys. Chem. B, 1997, 101, 9463.
18. M. C. Schlamp, X. Peng, A. P. Alivisatos, J. Appl. Phys. 1997, 82, 1.
19. A. C.-M. Yang, E. J. Kramer, J. Polym. Sci., Polym. Phys. Ed. 1985, 23,1353.
20. A. C.-M. Yang, E. J. Kramer, C. C. Kuo, S. L. Phoenix,
21. A. C.-M. Yang, M. S. Kunz, J. A. Logan, Macromolecules 1993, 26, 1767.
22. J.–H. Lin, A. C.–M. Yang, Macromolecules 34, 3698 (2001)
23. I. M. Ward, Mechanical Properties of Solid polymers, 2nd ed. (john Wiley&Sons Press: New York 1983).
24. E. Collini, G. D. Scholes, Science 2009, 323, 369-373.
25. T. M. Figueira-Duarte, P. G. Del Rosso, R. Trattnig, S. Sax, E. J. W. List, K. Müllen, Adv. Mater. 2010 22, 990-993.
26. L. J. Rothberg, M. Yan, S. Son, M. E. Galvin, E. W. Kwock, T. M. Miller, H. E. Katz, R. C. Haddon, F. Papadimitrakopoulos, Synth. Met. 1996 78, 231-236.
27. M. Yan, L. J. Rothberg, E. W. Kwock, T. M. Miller, Phys. Rev. Lett. 1995 75, 1992-1995.
28. G. He, Y. Li, J. Liu, Y. Yang, Appl. Phys. Lett. 2002 80, 4247-4249.
29. K. M. Nimith, M. N. Satyanarayan, G. Umesh, Opt. Mater. 2018 80, 143-148.
30. T. M. Swager, Acc. Chem. Res. 2008 41, 1181-1189.
31. Y. H. Liu, C. C. Huang, C. C. Cheng, A. C. M. Yang, Mater. Chem. Phys. 2022, 277, 125505.
32. J. W. P. Lin, L. P. J. Dudek, Polym. Sci., Polym. Chem. Ed. 1980, 18, 2869.
33. K. Y. Jen, G. G. Miller, R. L. J. Elsenbaumer, Chem. Soc.,Chem Commum. 1986, 17, 1346.
34. D. L. Elsenbaumer, K. Y. Jen, R. Oboodi, Synth. Met. 1986, 15, 169.
35. V. V. Kislyuk, O. P. Dimitriev, A. A. Pud, J. Lautru, I. Ledoux-Rak, J. Phys.: Conf. Ser. 2011, 286, 012009.
36. T. Adachi, J. Brazard, R. J. Ono, B. Hanson, M. C. Traub, Z. Q. Wu, Z. Li, J. C. Bolinger, V. Ganesan, C. W. Bielawski, D. A. V. Bout, P. F. Barbara, J. Phys. Chem. Lett. 2011, 2, 12, 1400–1404
37. 童冠博, 清華大學材料系碩士論文, 奈米塑性形變引致共軛高分子單分子發光之重大增益現象與研究 (2008).
38. 張智鴻, 清華大學材料系碩士論文, 共軛高分子P3HT分子拉伸與光電效率提升之研究: 局部形變和薄膜除潤 (2012).
39. 魯宣, 清華大學材料系碩士論文, 抑制自縛增進高分子光電量子效率以及介面電場量子點激發電荷之交互作用 (2022)
40. G. Reiiter, Langmuir 1993, 9, 1344.
41. Neamen, Donald A. Semiconductor Physics and Devices: Basic Principles (3rd ed.). McGraw-Hill Higher Education. 2003.
42. Eunhee Lim, Kelly A. Peterson, Gregory M. Su, and Michael L.Chabinyc, Chem. Mater. 2018, 30, 3, 998–1010
43. Sota UKAI, Hiroshi ITO, Kazuhiro MARUMOTO and Shin-ichi KURODA, Journal of the Physical Society of JapanVol. 74, No. 12, December, 2005, pp. 3314–3319
44. Turley, Jim. The Essential Guide to Semiconductors. Prentice Hall PTR. 2002
45. Harold O. Lee III1 and Sam-Shajing Sun Materials Science, 5(3): 479–493
46. M.T. Loponen , T. Taka, J. Laakso, K. Väkiparta , K. Suuronen, P. Valkeinen, J.-E. Österholm, Synthetic Metals, Volume 41, Issues 1–2, 30 April 1991, Pages 479-484
47. R. Paschotta, article on "Doping Concentration" in the RP Photonics Encyclopedia, retrieved 2024-03-31
48. P. Pingel; R. Schwarzl; D. Neher, Appl. Phys. Lett. 100, 143303(2012)
49. Zuliang Zhuo, Fujun Zhang, Jian Wang, Jin Wang, Xiaowei Xu, Zheng Xu, Yongsheng Wang, and Weihua Tang, Solid-State ElectronicsVolume 63, Issue 1, September 2011, Pages 83-88
50. Grinberg, Anatoly A., et al. "Space-charge-limited current in a film." IEEE Transactions on Electron Devices 36.6 (1989): 1162-1170.
51. Geoghegan, Mark, and Georges Hadziioannou. Polymer electronics. Vol. 22. Oxford Master Physics, 2013.
52. R. J. Umstattd; C. G. Carr; C. L. Frenzen; J. W. Luginsland; Y. Y. Lau, Am. J. Phys. 73, 160–163 (2005)
53. Obadiah G. Reid, Keiko Munechika, and David S. Ginger*Nano Lett. 2008, 8, 6, 1602–1609Publication Date:May 1, 2008
54. Chen, Si. Dielectric constant measurement of P3HT, polystyrene, and polyethylene. Diss. Faculty of Science and Engineering, 2017.
55. Jason A Röhr et al 2018 J. Phys.: Condens. Matter 30 105901
56. Multimode SPM instruction manual ver. 4.31, Digital Instruments, Veeco Metrology Group.
57. 林鶴南, 李龍正, 劉克迅, 原子力顯微鏡及其在半導體研究上的應用,科儀新知 17, 13 (1996)
58. 汪建民主編, 材料分析,中國材料科學學會 (1998)
59. Hanlin Hu , Kui Zhao , Nikhil Fernandes , Pierre Boufflet , James H. Bannock , Liyang Yu , John C. de Mello , Natalie Stingelin , Martin Heeneyc, Emmanuel P. Giannelis and Aram Amassian , J. Mater. Chem. C, 2015, 3, 7394-7404
60. "Solubility in the Coatings Industry", Skand. Tidskr. Färg och Lack, Vol. 17, Nº 4,1971, pp. 69-77
61. 危險化學品安全技術全書.第一卷/張海峯主編.—2版.北京;化學工業出版社,2007.6 ISBN 978-7-122-00165-8
62. Rossberg, Manfred; Lendle, Wilhelm; Pfleiderer, Gerhard; Tögel, Adolf; Dreher, Eberhard-Ludwig; Langer, Ernst; Rassaerts, Heinz; Kleinschmidt, Peter; Strack, Heinz; Cook, Richard; Beck, Uwe; Lipper, Karl-August; Torkelson, Theodore R.; Löser, Eckhard; Beutel, Klaus K.; Mann, Trevor. Chlorinated Hydrocarbons. Ullmann's Encyclopedia of Industrial Chemistry. 2006.
63. Haynes, William M. CRC Handbook of Chemistry and Physics 92nd. CRC Press. 2011.