研究生: |
劉亦瑋 Liu, Yi-Wei |
---|---|
論文名稱: |
利用耗散粒子動力學模擬不同分子形狀的三元性分子之平衡相態衍變 Morphological Transition of Ternary Molecules in Different Shape via Dissipative Particle Dynamics Simulation |
指導教授: | 張榮語 |
口試委員: |
吳建興
黃招財 曾煥錩 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 耗散粒子動力學 、雙親性分子 、三元性分子 |
外文關鍵詞: | Dissipative Particle Dynamics Simulation, Bolaamphiphiles, Ternary amphiphiles |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用耗散粒子動力學探討三元性分子在不同分子形狀下
的平衡結構,此三元性分子即為具有剛硬鏈段的苯環核心與互不相容
的兩端以及柔軟的側鏈基,並分別模擬了僅單邊有側鏈的Double T
和 Triple T 形狀的分子,以及分子兩邊皆有側鏈的Double 10 和Triple
10 形狀的分子;結果可發現在Double T 出現類體心立方堆積的結構,
即立方體八個角上有堆積而中心沒有。而在Double 10 和Triple 10 兩
形狀下的分子則皆可發現層板的結構,並且在Double 10 下更可觀察
到單層層板的現象出現,而在Triple 10 下則可觀察到雙層層板的結
構。此結果顯示我們可以藉由分子形狀間的微項改變,除了可得到特
殊的平衡結構外,進而可調控層板的厚度。本論文發現的類體心堆積
結構在特定模板的填充或是新式材料的設計有相當的助益,而單層和
雙層層板結構在微觀尺度下的奈米材料製備或薄膜設計也有一定的
貢獻,尤其本論文所模擬的為液晶分子,因結構較剛硬,其應用更廣
泛。
This thesis uses dissipative particle dynamics simulation to examine
the phase behavior of ternary bolaamphiphiles. These amphiphilic
molecules consist of a rod-like aromatic core, with polar groups at each
end and lateral chains. In order to figure out the influence of different
molecular shapes, there are different shape of molecules are presented in
this paper. First, we simulate Double T- and Triple T- shape
bolaamphiphiles and find out the special structure which the rigid units
tend to occupies eight vertices whilst lateral chains fill the insides. Next,
we simulate Double +- and Triple +-shape bolaamphiphilies which with
two chains in each sides. There are multiple lamellar structures are
demonstrated. We can observe single lamellar structure which is formed
from rigid chains and lateral chains interlace in Double + shape
bolaamphiphilies. And the double lamellar structure is also observed in
Triple + shape bolaamphiphiles.
To sum up, These phase morphologies show that we can control the
thick of lamellar structures and demonstrate that we can obtain new
packing structure by varies the molecular shapes. Thus, we can perform
more complex structure and develop new nano-materials in the coming
future.
Keywords
1 M. Bates, and M. Walker, 'Dissipative Particle Dynamics Simulation of T-and X-Shaped Polyphilic Molecules Exhibiting Honeycomb Columnar Phases', Soft Matter, 5 (2009), 346-53.
2 M.A. Bates, and M. Walker, 'Dissipative Particle Dynamics Simulation of Quaternary Bolaamphiphiles: Multi-Colour Tiling in Hexagonal Columnar Phases', Phys. Chem. Chem. Phys., 11 (2009), 1893-900.
3 Houyang Chen, and Eli Ruckenstein, 'Self-Assembly of P-Shaped Copolymers', Soft Matter, 8 (2012).
4 X. Cheng, M. Prehm, M.K. Das, J. Kain, U. Baumeister, S. Diele, D. Leine, A. Blume, and C. Tschierske, 'Calamitic Bolaamphiphiles with (Semi) Perfluorinated Lateral Chains: Polyphilic Block Molecules with New Liquid Crystalline Phase Structures', Journal of the American Chemical Society, 125 (2003), 10977-96.
5 A.J. Crane, F.J. Martínez-Veracoechea, F.A. Escobedo, and E.A. Müller, 'Molecular Dynamics Simulation of the Mesophase Behaviour of a Model Bolaamphiphilic Liquid Crystal with a Lateral Flexible Chain', Soft Matter, 4 (2008), 1820-29.
6 P. Espanol, and P. Warren, 'Statistical Mechanics of Dissipative Particle Dynamics', EPL (Europhysics Letters), 30 (1995), 191.
7 Ju¨rgen-Hinrich Fuhrhop, and Tianyu Wang, 'Bolaamphiphiles', Chem. Rev., 104 (2004), 2901-37.
8 Robert D. Groo, and Timothy J. Madden, 'Dynamic Simulation of Diblock Copolymer Microphase Separation', J. Chem. Phys., 108 (1998).
9 R.D. Groot, 'Mesoscopic Simulation of Polymer-Surfactant Aggregation', Langmuir, 16 (2000), 7493-502.
10 Robert D. Groot, and Timothy J. Madden, 'Dynamic Simulation of Diblock Copolymer Microphase Separation', J. Chem. Phys., 108 (1998).
11 Robert D. Groot, and Patrick B. Warren, 'Dissipative Particle Dynamics: Bridging the Gap between Atomistic and Mesoscopic Simulation', J. Chem. Phys., 107 (1997).
12 A.C. Gyorkos, J.K. Stille, and L.S. Hegedus, 'The Total Synthesis of (.+-.)-Epi-Jatrophone and (.+-.)-Jatrophone Using Palladium-Catalyzed Carbonylative Coupling of Vinyl Triflates with Vinyl Stannanes as the Macrocycle-Forming Step', Journal of the American Chemical Society, 112 (1990), 8465-72.
13 PJ Hoogerbrugge, and J. Koelman, 'Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics', EPL (Europhysics Letters), 19 (1992), 155.
14 M. Kölbel, T. Beyersdorff, X.H. Cheng, C. Tschierske, J. Kain, and S. Diele, 'Design of Liquid Crystalline Block Molecules with Nonconventional Mesophase Morphologies: Calamitic Bolaamphiphiles with Lateral Alkyl Chains', Journal of the American Chemical Society, 123 (2001), 6809-18.
15 A.R. Khokhlov, and P.G. Khalatur, 'Microphase Separation in Diblock Copolymers with Amphiphilic Block: Local Chemical Structure Can Dictate Global Morphology', Chemical Physics Letters, 461 (2008), 58-63.
16 S. Plimpton, 'Fast Parallel Algorithms for Short-Range Molecular Dynamics', Journal of Computational Physics, 117 (1995), 1-19.
17 H. J. Qian, and L. J. Chen, 'The Dependence of Nanostructures on the Molecule Rigidity of A2(B4)2-Type Miktoarm Block Coplymer', J. Chem. Phys., 124 (2006).
18 S. Roy, D. Markova, A. Kumar, M. Klapper, and F. Müller-Plathe, 'Morphology of Phosphonic Acid-Functionalized Block Copolymers Studied by Dissipative Particle Dynamics', Macromolecules, 42 (2009), 841-48.
19 C. Tschierske, 'Liquid Crystal Engineering–New Complex Mesophase Structures and Their Relations to Polymer Morphologies, Nanoscale Patterning and Crystal Engineering', Chem. Soc. Rev., 36 (2007), 1930-70.
20 吳翊帆, '以耗散粒子動力學法研究樹枝狀高分子之藥物攜帶及釋放功能', 2007).
21 吳穎婷, '耗散粒子動力學模擬帶支鏈官能基團高分子與線性高分子共混系統之相態衍變', 2011).
22 周勢濠, '以耗散粒子動力學法研究三段鏈星狀高分子之型態', 2006).
23 邱佑宗, '耗散粒子動力學計算方法簡介及應用', 工業材料雜誌 (2004).
24 金勇, 苗青, 张彪, and 曹志峰, 'Bola 型表面活性剂合成及其应用', 化学进展, 20 (2008), 918-30.
25 楊小青, '電腦模擬應用在光電材料上之探究', 2004).
26 農志雄, '以耗散粒子動力學法研究雙段鏈星狀高分子之型態', 2006).
27 鄢立傑, '耗散粒子動力學模擬帶支鏈官能基團高分子與線性高分子共混系統之相態衍變', 2010).
28 吕庆, 贡浩飞, and 刘鸣华, '双头基两亲分子研究进展', 化学进展, 13 (2001), 161-66.
29 黄磊, 杨永强, and 李金洪, '生物矿化研究现状和展望', 地质与资源, 18 (2009), 317-20.