研究生: |
劉青松 Ching-Sung Liu |
---|---|
論文名稱: |
一類保結構阿洛迪方法求解二次特徵值問題 A Structured Arnoldi-type Algorithm For Solving Quadratic Eigenvalue Problem |
指導教授: |
林文偉
Wen-Wei Lin |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 17 |
中文關鍵詞: | 阿洛迪 |
外文關鍵詞: | RSTO |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
首先回顧由一個矩陣和一個向量所生成Krylov子空間, 然後介紹一種解二次特徵值問題的方法稱之為RSTO演算法. 由於RSTO演算法的保結構性, 因此可以很自然的把二次特徵值問題轉換成線性的特徵值問題. 最後舉例比較RSTO, Arnoldi和SOAR演算法.
At first, recall Krylov subspace which generated by matrix A and vector v. And then introduce a kid of procedure for solving quadratic eigenvalue problem (QEP) which is called RSTO procedure. Because of the structure preserving of RSTO procedure, hence, RSTO procedure can be naturally reduce quadratic eigenvalue problem (QEP) to linear eigenvalue problem, for help us to solve large-scale matrix problems. Finally, given some example compare with RSTO, Arnoldi and Second order Arnoldi method (SOAR) procedure for computational cost, orthogonality and uniqueness.
1. Z.J.~Bai and Y.F.~Su, SOAR: A second order Arnoldi
method for the solution of the quadratic eigenvalue problem, SIAM J. Matrix Anal. Appl.,26(3),640-659
2. Z.~BAI,~J.~DEMMEL, J.~DONGARRA, A.~RUHE, AND H.~VAN DER VORST, EDS., Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide, SIAM, Philadelphia, 2000.
3. J.~W.~DEMMEL, Applied Numerical Linear Algebra, SIAM, Philadelphia, 1997.
4. G.~GOLUB AND C.~VAN LOAN, Matrix Computation, 3rd ed., The Johns Hopkins University Press, Baltimore, MD, 1996.
5. B.N.~PARLETT, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, NJ,1980; revised reprint, Classics Appl. Math.20, SIAM, Philadephia,1997.
6. Y.~SAAD, Numerical Methods for Large Eigenvalue Problems, Halsted Press, New York, 1992.
7. Y.~SAAD, Iterative Methods for Linear Systems, PWS, Boston, 1996.
8. G.L.G.~SLEIJPEN, A.G.L.~BOOTEN, D.R.~FOKKEMA, AND
H.A.~VAN~DER~VORST, Jacobi-Davidson type methods for
generalized eigenproblems and polynomial eigenproblems, BIT,
36(1996), pp. 8-9.
9. G.L.G.~SLEIJPEN, H.A.~VAN~DER~VORST,~and
M.B.~VAN~GIJZEN, Quadratic eigenproblems are no problem, SIAM NEW, 29(1996), pp. 8-9
10. F.~Tisseur and K.~Meerbergen, The Quadratic Eigenvalue Problem, SIAM Review, 43,235-286, 2001.