簡易檢索 / 詳目顯示

研究生: 侯立人
Hou, Li-Jen
論文名稱: 具低相位雜訊之微機械振盪器研製
Micromechanical Resonator Oscillators with Enhanced Phase Noise Performance
指導教授: 李昇憲
Li, Sheng-Shian
口試委員: 呂良鴻
Lu, Liang-Hung
鄭裕庭
Cheng, Yu-Ting
徐碩鴻
Hsu, Shou-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2011
畢業學年度: 100
語文別: 中文
論文頁數: 67
中文關鍵詞: 射頻微機電微機械共振器微機電振盪器極限功率負載相位雜訊矽基共振器
外文關鍵詞: RF-MEMS, micromechanical resonator, MEMS oscillator, power handling, phase noise, silicon-based resonator
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用雙端固定樑共振器,設計並探討使微機電振盪器相位雜訊降低的方法。除此之外,雙端固定樑共振器的不同寬度對其最大功率負載的影響也有所討論。這篇論文的目標是試圖利用理論及實驗證明此想法的可行性與實用性。
    本文首先以雙端固定樑共振器的機械分析為出發點,利用分析後的參數對各個固定樑共振器模型化,並且針對雙端固定樑共振器的機械特性設計與其搭配的轉阻放大器電路。其中,本文之雙端固定樑共振器與傳統型式迥然不同,而在開迴路量測上便可以顯示此方法有較大之功率負載的優點。此外在與所設計的轉阻放大器結合之後,開迴路的量測可以顯示該系統可滿足巴克豪森準則。而在閉迴路量測上,我們除了關切該系統正迴授所輸出的波型外,其相位雜訊的降低也是本文探討重點。我們在使用新式設計的雙端固定樑共振器作為振盪器之Resonant Tank,其相位雜訊的實驗結果顯示,新式的雙端固定樑振盪器在閉迴路量測時,far-from-carrier的相位雜訊有近26.5dB的降低。
    本文另外討論了有關於共振樑的寬度與其極限功率負載的關係。而實驗的結果得知,當雙端固定樑共振器的寬度越寬,其極限功率負載則越佳。從閉迴路的量測也顯示此一結果。
    因此,利用創新式的雙端固定樑共振器的確可以有效改善該微機械振盪器的相位雜訊,未來應用在CMOS-MEMS使其積體化外,微機電的小體積,高Q值以及低相位雜訊將是取代石英振盪器的優勢。


    ABSTRACT i 中文摘要 iii ACKNOWLEDGEMENT iv CHAPTER 1. Introduction 1 1.1. Introduction of RF-MEMS 1 1.2. Reviews of MEMS Oscillator 1 1.3. Motivation of MEMS Oscillator 4 1.4. Thesis Organization 6 CHAPTER 2. MEMS Resonator Modeling and Design 7 2.1. Differential Equation of Mechanical System 7 2.2. Micromechanical Resonator Modeling 11 2.3. The Analysis of a One-Port Clamped-Clamped Beam Resonator 15 2.4. The Analysis of a Two-Port Clamped-Clamped Beam Resonator and Power Handling Enhancement 18 CHAPTER 3. Sustaining Circuit and Oscillator Design 26 3.1. Introduction of Series-Resonant Oscillator 26 3.2. Review of TIA Circuits 28 3.3. Sustaining Circuit Design for MEMS Oscillators 31 3.4. MEMS Oscillator Design 37 CHAPTER 4. Fabrication of Silicon-Based Resonator and CMOS-MEMS Post-Process 40 4.1. Fabrication of Silicon-Based Resonator 40 4.2. The Post-Process of CMOS-MEMS Resonators 42 CHAPTER 5. Measurement of the Resonator, Circuit, and Oscillator 45 5.1. The Measurement of the Silicon-Based Resonators 45 5.2. The Measurement of MEMS Oscillators 53 5.3. Measurement Result of TIA Circuit 60 CHAPTER 6. Conclusion and Future Work 62 6.1. Contribution 62 6.2. Future Work 63 Reference: 65

    [1] C. T.-C. Nguyen, “MEMS technology for timing and frequency control,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 54, no. 2, pp. 251-270, Feb. 2007.
    [2] J. B. Muldavin and G. M. Rebeiz "High-isolation CPW MEMS shunt switchesPart 2: Design", IEEE Trans. Microw. Theory Tech., vol. 48, pp.1053 2000.
    [3] S.-S. Li, Y.-W. Lin, Y. Xie, Z. Ren, and Clark T.-C. Nguyen, “Micromechanical Hollow-Disk Ring Resonators,” Proceedings, 17th Int. IEEE Micro Electro Mechanical Systems Conf., Maastricht, The Netherlands, Jan. 25-29, 2004, pp. 821-824.
    [4] G. Piazza, P.J. Stephanou, J.P. Black, R.M. White, and A. P. Pisano, "Single-Chip Multiple-Frequency RF Microresonators based on Contour-Mode and FBAR Technologies," 2005 IEEE Ultrasonic Symposium, Rotterdam, pp. 1187 - 1190, 2005.
    [5] R. Abdolvand, H. Mirilavasani, G.K. Ho, and F. Ayazi, “Thin-Film Piezoelectric-on-Silicon Resonators for High-Frequency Reference Oscillator Applications,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Volume 55, Issue 12, December 2008, pp. 2596-2606.
    [6] H. M. Lavasani, A. K. Samarao, H. Casinovi, and F. Ayazi, “A 145MHz low phase-noise capacitive silicon micromechanical oscillator,” IEDM 2008, pp. 675-678, Dec. 2008.
    [7] Y.W. Lin, S.S. Li, Z. Ren, C.T.C. Nguyen. "Low phase noise array-composite micromechanical wine-glass disk oscillator". IEDM’05. Dec. 2005, pp. 287-290.
    [8] Nguyen C T-C and Howe R T 1999 An integrated CMOS micromechanical resonator high-Q oscillator IEEE J.Solid-State Circuits 34 440–55.
    [9] J. Verd,, A. Uranga, G. Abadal, J. L. Teva, F. Torres, J. L´opez, F. P´erez-Murano, J. Esteve, and N. Barniol, “Monolithic CMOS MEMS Oscillator Circuit for Sensing in the Attogram Range,” IEEE ELECTRON DEVICE LETTERS, 29 146-148.
    [10] R. J. Matthys, Crystal Oscillator Circuits. New York: John Wiley & Sons, 1983.
    [11] S. Lee, M. U. Demirci, and Clark T.-C. Nguyen, “A 10-MHz micromechanical resonator Pierce reference oscillator for communications,” Digest of Technical Papers, the 11th Int. Conf. on Solid-State Sensors & Actuators (Transducers’01), Munich, Germany, June 10-14, 2001, pp. 1094-1097.
    [12] Y.-W. Lin, S. Lee, Z. Ren, and C. T.-C. Nguyen, “Series-resonant micromechanical resonator oscillator,” Technical Digest, 2003 IEEE International Electron Devices Meeting, Washington, DC, Dec. 8-10, 2003, pp. 961-964.
    [13] S. Lee and C. T.-C. Nguyen, “Influence of automatic level control on micromechanical resonator oscillator phase noise,” Proceedings, 2003 IEEE Int. Frequency Control Symposium, Tampa, Florida, May 5-8, 2003, pp. 341-349.
    [14] S. Lee and C. T.-C. Nguyen, “Mechanically-coupled micromechanical arrays for improved phase noise,” Proceedings, IEEE Int. Ultrasonics, Ferroelectrics, and Frequency Control 50th Anniv. Joint Conf., Montreal, Canada, Aug. 24-27, 2004, pp. 280-286.
    [15] Discera, Inc., http://www.discera.com/
    [16] SiTime, Inc., http://www.sitime.com/
    [17] C. T.-C. Nguyen and R. T. Howe, “An integrated CMOS micromechanical resonator high-Q oscillator,” IEEE Journal of Solid-State Circuits, vol. 34, no. 4, pp. 440-455, April 1999.
    [18] F. D. Bannon III, J. R. Clark, and C. T.-C. Nguyen, “High frequency micromechanical filters,” IEEE J. Solid-State Circuits, vol. 35, no. 4, pp. 512-526, April 2000.
    [19] Hossein Miri Lavasani, Wanling Pan, Brandon Harrington,Reza Abdolvand, and Farrokh Ayazi, et al., “A 76 dBΩ 1.7 GHz 0.18 μm CMOS Tunable TIA Using Broadband Current Pre-Amplifier for High Frequency Lateral MEMS Oscillators,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 46, 2011, pp. 224-235.
    [20] F. Nabki and M. N. El-Gamal, “A High Gain-Bandwidth Product Transimpedance Amplifier for MEMS-Based Oscillators” Solid-State Circuits Conference, 2008. ESSCIRC 2008. 34th European , 2008, pp. 454-457.
    [21] James Salvia, Pedram Lajevardi, Mohammad Hekmat, and Boris Murmann, “A 56MΩ CMOS TIA for MEMS Applications,” IEEE Custom Intergrated Circuits Conference (CICC), 2009 pp. 198-202.
    [22] Sung Min Park, Hoi-Jun Yoo, “1.25-Gb/s Regulated Cascode CMOS Transimpedance Amplifier for Gigabit Ethernet Applications,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 39, 2004 pp. 112-121.
    [23] Huei-Yan Hwang, Jun-Chau Chien, Tai-Yuan Chen, Liang-Hung Lu “A CMOS Tunable Transimpedance Amplifier,” IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 16, pp. 693-695, April 2006.
    [24] Maekawa,T. Amakawa,S. Ishihara,N. Masu,K., “Design of CMOS inverter-based output buffers adapting the Cherry-Hooper broadbanding technique” Circuit Theory and Design, 2009. ECCTD 2009. European Conference on , pp. 511-514, Aug. 2009.
    [25] Seungbae Lee, “Micromechanical Resonator Reference Oscillators for Wireless Communications,” PhD Dissertation, University of Michigan, 2006.
    [26] Yu-Wei Lin, “LOW PHASE NOISE MICROMECHANICAL REFERENCE OSCILLATORS FOR WIRELESS COMMUNICATIONS” PhD Dissertation, University of Michigan, 2007.
    [27] B. Razavi, “A 622Mb/s 4.5pA/√Hz CMOS transimpedance amplifier,” ISSCC Tech. Digest, San Francisco, CA, Feb. 7-9, 2000, pp. 162-163.
    [28] A. S. Sedra and K. C. Smith, “Microelectronic Circuits”, 5th. Ed. New. York: Oxford University Press, 2004.
    [29] Mobius Microsystem, Inc., http://www.mobius-microsystems.com/

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE