簡易檢索 / 詳目顯示

研究生: 劉又榮
Liu, Yoh-Rong
論文名稱: 以原子層沉積法製備奈米鉑觸媒於氮化鈦反蛋白石結構應用於質子交換膜燃料電池之研究
Fabrication of Pt Catalyst on TiN Inverse Opal Structure for Proton Exchange Membrane Fuel Cell by Atomic Layer Deposition
指導教授: 彭宗平
Perng, Tsong-Pyng
口試委員: 葉君棣
Chuin-Tih Yeh
王冠文
Kuan-Wen Wang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 111
中文關鍵詞: 原子層沉積技術氮化鈦反蛋白石結構鉑觸媒質子交換膜燃料電池
外文關鍵詞: atomic layer deposition, titanium nitride, inverse opal structure, Pt catalyst, proton exchange membrane fuel cell
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要係研究以原子層沉積技術 (atomic layer deposition, ALD) 製備氮化鈦 (TiN) 反蛋白石結構,作為鉑觸媒之支撐物,應用在質子交換膜燃料電池 (proton exchange membrane fuel cell, PEMFC)。利用旋轉塗佈法將不同直徑之聚苯乙烯 (PS) 球塗佈在碳紙上,製備多層聚苯乙烯球 (PS sphere multilayers),做為反蛋白石結構模板,其表面積可藉由使用較小的球和增加層數來提升,而結構的孔隙也可藉由不同大小的球做調整。之後使用原子層沉積法將二氧化鈦沉積於多層聚苯乙烯球上,以製備二氧化鈦反蛋白石結構;再將其在氨氣氛圍下做氮化處理,發現可在800 ˚C持溫一小時得到完全之氮化鈦反蛋白石結構。再利用原子層沉積將沉積白金奈米顆粒於氮化鈦反蛋白石結構上,白金可均勻沉積在厚度為10 µm之氮化鈦載體上,其顆粒大小和重量也可由ALD之循環數決定。由於ALD自我侷限反應之特性,白金重量也可藉由使用尺寸較小的球及增加氮化鈦結構厚度而提升。燃料電池效率由自製的燃料電池測試平台量測,雖然自製電極之效能低於商用材,但在相同白金重量下,卻有較高的比效能和白金利用效率。


    Titanium nitride (TiN) inverse opal structure was fabricated by atomic layer deposition (ALD) as a support for Pt catalyst for proton exchange membrane fuel cell (PEMFC) by atomic layer deposition (ALD). Polystyrene (PS) spheres were coated in multilayers on carbon paper by spin-coating as a template. The surface area can be increased by using smaller size of spheres and by increasing the thickness of PS multilayers. The proportion of micropores can also be adjusted by using spheres in different diameters. Titanium dioxide (TiO2) thin film was then deposited on PS sphere multilayers by ALD. Titanium nitride inverse opal structure was obtained by direct nitridation of TiO2 inverse opal structure in flowing ammonia atmosphere at 800 ˚C for 1 h. Platinum nanoparticles were then deposited on TiN inverse opal structure by ALD as well, and a uniform coverage down to 10 µm of depth was achieved. The particle size and loading could be controlled by the cycle number of ALD. Because of self-limiting reactions of ALD, the Pt loading can be increased by lowering the sphere size and increasing the thickness of TiN inverse opal layers. The performance of PEMFC using Pt/TiN inverse opals as electrodes was evaluated by a home-made PEMFC test station. The home-made electrodes showed lower power capacities but showed higher specific power densities and thus better utilization efficiency of Pt compared with that using commercial E-Tek electrodes.

    摘要 II Abstract III 致謝 IV Table of contents VI Chapter 1 Introduction 1 1-1 Research Background 1 1-2 Motivation of Research 2 1-3 Fundamentals of Fuel Cell 2 1-3-1 History and development of fuel cell 4 1-3-2 Types of fuel cell 4 1-3-3 Application of fuel cell 5 1-4 Overview of Titanium Nitride 8 1-5 Atomic Layer Deposition 12 1-5-1 Basic features of ALD 12 1-5-2 Growth process of ALD 12 Chapter 2 Literature Review 17 2-1 Principles of PEMFC 17 2-1-1 Thermodynamics of PEMFC 17 2-1-2 Kinetics of PEMFC 20 2-1-3 Triple-phase boundary 28 2-2 Structure of PEMFC 28 2-2-1 Membrane electrode assembly 28 2-2-2 Proton exchange membrane 31 2-2-3 Catalyst layer 31 2-2-4 Gas diffusion layer 33 2-2-5 Bipolar plates 34 2-3 Catalysts for PEMFC 36 2-3-1 Materials for catalyst 36 2-3-2 Effect of Pt nanoparticle size 36 2-3-3 Method of depositing Pt particles 39 2-4 Catalyst Support in PEMFC 43 2-4-1 Conventional carbon supports 43 2-4-2 Non-conventional carbon supports 44 2-5 Atomic Layer Deposition of TiO2 Film and Pt Catalyst 44 Chapter 3 Experimental Procedures 52 3-1 Fabrication of Titanium Nitride Inverse Opal Structure 52 3-1-1 Preparation of polystyrene sphere multilayers on carbon paper 52 3-1-2 Deposition of TiO2 by atomic layer deposition 52 3-1-3 Nitridation of TiO2 inverse opal structure 52 3-1-4 Deposition of Pt nanoparticles on TiN inverse opal structure by ALD 55 3-2 Characterization of Pt@TiN Inverse Opal Structure 55 3-3 Electrochemical Analysis 56 3-4 Preparation of Membrane Electrode Assembly 57 3-5 PEMFC Single Cell Performance Test 57 Chapter 4 Results and Discussion 61 4-1 Morphologies of Polystyrene Sphere Multilayers on Carbon Paper 61 4-2 Deposition of TiO2 Thin Film by Atomic Layer Deposition 61 4-3 Nitridation of TiO2 Inverse Opal Structure 68 4-3-1 Effect of nitridation temperature 68 4-3-2 Effect of holding time 70 4-3-3 Effect of working pressure 70 4-3-4 Electrical properties of TiN 70 4-4 Pt@TiN Inverse Opal Structure 74 4-4-1 Characterization of Pt@TiN inverse opal structure 74 4-4-2 Pt loading on TiN inverse opal structure 77 4-5 Electrochemical Characterization of Pt@TiN Inverse Opal Structure 81 4-6 Performance of MEA Using Pt@TiN Inverse Opal Structure 90 4-6-1 Effect of platinum nanoparticle size 90 4-6-2 Effect of reactive surface area 92 4-6-3 Effect of catalyst layer thickness 92 4-6-4 Performance comparison of E-Tek and home-made electrodes 95 Chapter 5 Conclusions 99 Chapter 6 Suggested Future Work 101 References 102

    1. G. Hoogers, Fuel Cell Technology Handbook, CRC Press, London and New York (2003).
    2. J. O’M Bockris and S. Srinivasan, Fuel Cells:Their Electrochemistry, McGraw-Hill (1969).
    3. L. Carrette, K. A. Friedrich, and U. Stimming, “Fuel cells:principles, types, fuels, and applications,” Chem. Phys. Chem., 1 (2000) 162-193.
    4. S. Maass, F. Finsterwalder, G. Frank, R. Hartmann, and C. Merten, “Carbon support oxidation in PEM fuel cell cathodes,” J. Power Sources, 176 (2008) 444–451.
    5. B. Avasarala, R. Moore, and P. Haldar, “Surface oxidation of carbon supports due to potential cycling under PEM fuel cell conditions,” Electrochim. Acta, 55 (2010) 4765–4771.
    6. B. Avasarala, T. Murray, W. Li, and P. Haldar, “Titanium nitride nanoparticles based electrocatalysts for proton exchange membrane fuel cells,” J. Mater. Chem., 19 (2009) 1803-1805.
    7. J. S. King, E. Graugnard, and C. J. Summers, “TiO2 inverse opals fabricated using low-temperature atomic layer deposition,” Adv. Mater., 17 (2005) 1010-1013.
    8. J. M. Andújar and F. Segura, “Fuel cells: history and updating. A walk along two centuries,” Renew. Sust. Energ. Rev., 13 (2009) 2309–2322.
    9. P. Costamagna and S. Srinivasan, “Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000 Part I. Fundamental scientific aspects,” J. Power Sources, 102 (2001) 242-252.
    10. EG & G Technical Services, Inc., Fuel Cell Hankbook (7th Edition), U.S. Department of Energy (2002).
    11. B. H. Steele and A. Heinzel, “Materials for fuel-cell technologies,” Nature, 414 (2001) 345-352.
    12. M. Cropper, “Fuel cells for people,” Fuel Cells, 4 (2004) 236-240.
    13. http://www.fuelcelltoday.com/applications/portable.
    14. http://www.toyota.com/fuelcell/.
    15. R. A. Andrievski, Z. M. Dashevsky, and G. V. Kalinnikov, “Conductivity and the hall coefficient of nanostructured titanium nitride films,” Tech. Phys. Lett., 309 (2004) 30-932.
    16. G. Zhao, T. Zhang, T. Zhang, J. Wang, and G. Han, “Electrical and optical properties of titanium nitride coating prepared by atmospheric pressure chemical vapor deposition,” J. Non-Cryst. Solids, 354 (2008) 1272-1275.
    17. J. Hojo, O. Iwamoto, Y. Maruyama, and A. Kato, “Defect structure, thermal and electrical properties of Ti nitride and V nitride powders,” J. Less. Common. Met., 53 (1977) 265-276.
    18. A. Matthews, “Titanium nitride PVD coating technology,” Surf. Eng., 1 (1985) 93-104.
    19. J. B. Price, J. O. Borland, and S. Selbrede, “Properties of chemical-vapor-deposited titanium nitride,” Thin Solid Films, 236 (1993) 311-318.
    20. M. Ritala, M. Leskelä, E. Rauhala, and P. Haussalo, “Atomic layer epitaxy growth of TiN thin films,” J. Electrochem. Soc., 142 (1995) 2731-2737.
    21. I. Milošev, H. H. Strehblow, B. Navinšek, and M. Metikoš-Hukovic, “Electrochemical and thermal oxidation of TiN coatings studied by XPS,” Surf. Interface Anal., 23 (1995) 529-539.
    22. K. Kamiya, T. Nishijima, and K. Tanaka, “Nitridation of the sol–gel‐derived titanium oxide films by heating in ammonia gas,” J. Am. Ceram. Soc., 73 (1990) 2750-2752.
    23. K. Kamiya, T. Yoko, and J. Bessbo, “Nitridation of TiO2 fibres prepared by the sol-gel method,” J. Mater. Sci., 22 (1987) 937-941.
    24. S. T. George, “Atomic layer deposition:an overview,” Chem. Rev., 110 (2010) 111-131.
    25. H. Kim, H. B. R. Lee, and W. J. Maeng, “Applications of atomic layer deposition to nanofabrication and emerging nanodevices,” Thin Solid Films, 517 (2009) 2563-2580.
    26. N. Pinna and M. Knez, Atomic Layer Deposition of Nanostructured Materials, WILEY-VCH (2011).
    27. D. R. Gaskell, Thermodynamics of Materials, Taylor&Francis, London and New York (2008).
    28. R. W. Balluffi, S. M. Allen, and W. C. Carter, Kinetics of Materials, A. JOHN WILEY&SONS, INC.
    29. A. Kirubakaran, S. Jain, and R. K. Nema, “A review on fuel cell technologies and power electronic interface,” Renew. Sust. Energ. Rev., 13 (2009) 2430-2440.
    30. L. Carrette, K. A. Friedrich, and U. Stimming, “Fuel cells – fundamentals and applications,” ChemPhysChem, 1 (2000) 162-193.
    31. R. O’Hayre and F. B. Prinz, “The air/platinum/Nafion triple-phase boundary:characteristics, scaling, and implication for fuel cells,” J. Electrochem. Soc., 151 (2004) 756-762.
    32. M. Rikukawa and K. Sanui, “Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers,” Prog. Polym. Sci., 25 (2000) 1463-1502.
    33. N. W. Deluca and Y. A. Elabd, “Polymer electrode membrane for the direct methanol fuel cell:a review,” J. Polym. Sci., Part B:Polym. Phys., 44 (2006) 2201-2225.
    34. A. M. Gadalla and B. Bower, “The role of catalyst support on the activity of nickel for reforming methane with CO2,” Chem. Eng. Sci., 43 (1988) 3049-3062.
    35. S. Y. Huang, P. Ganesan, S. Park, and B. N. Popov, “Development of titanium dioxide-supported platinum catalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications,” J. Am. Chem. Soc., 131 (2009) 13898-13899.
    36. M. J. Ledoux and P. H. Cuong, “Silicon carbide:a novel catalyst support for heterogeneous catalysis,” Cattech, 5 (2001) 226-246.
    37. J. F. Drillet, R. Dittmeyer, and K. Jüttner, “Activity and long-term stability of PEDOT as Pt catalyst support for the DMFC anode,” J. Appl. Electrochem., 37 (2007) 1219-1226.
    38. G. Lin and T. V. Nguyen, “Effect of thickness and hydrophobic polymer content of the gas diffusion layer on electrode flooding level in a PEMFC,” J. Electrochem. Soc., 152 (2005) 1942-1948.
    39. Y. Wang, C. Y. Wang, and K. S. Chen, “Elucidating difference between carbon paper and carbon cloth in polymer electrolyte fuel cells,” Electrochim. Acta, 52 (2007) 3965-3975.
    40. S. Park and B. N. Popov, “Effect of a GDL based on carbon paper or carbon cloth on PEM fuel cell performance,” Fuel, 90 (2011) 436-440.
    41. J. T. Gostick, M. A. Loannidis, M. W. Fowler, and M. D. Pritzkeer, “On the role of the microporous layer in PEMFC operation,” Electrochem. Commun., 11 (2009) 576-579.
    42. E. A. Cho, U. S. Jeon, H .Y Ha, S. A. Hong, and I. H. Oh, “Characteristics of composite bipolar plates for polymer electrolyte membrane fuel cells,” J. Power Sources, 125 (2004) 178-182.
    43. A. Wieckowski, Interfacial Electrochemistry:Theory:Experiment, and Applications, CRC Press, New York (1999).
    44. J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchein, T. Bligaard, and H. Jonsson, “Origin of the overpotential for oxygen reduction at a fuel-cell cathode,” J. Phys. Chem. B, 108 (2004) 17886-17892.
    45. E. S. Steigerwalt, G. A. Deluga, D. E. Cliffel, and C. M. Lukehart, “A Pt-Ru/graphitic carbon nanofiber nanocomposite exhibiting high relative performance as a direct-methanol fuel cell anode catalyst,” J. Phys. Chem. B, 105 (2001) 8097-8101.
    46. C. C. Chien and K. T. Jeng, “Effective preparation of carbon nanotube-supported Pt-Ru electrocatalysts,” Mater. Chem. Phys., 99 (2006) 80-87.
    47. S. T. Christensen, H. Feng, J. L. Libera, N. Guo, J. T. Miller, P. C. Stair, and J. W. Elam, “Supported Ru-Pt bimetallic nanoparticle catalysts prepared by atomic layer deposition,” Nano Lett., 10 (2010) 3047-3051.
    48. B. C. Beard and P. N. Ross, “The structure and activity of Pt-Co alloys as oxygen reduction electrocatalysts,” J. Electrochem. Soc., 137 (1990) 3368-3374.
    49. Q. Huang, H. Yang, Y. Tang, T. Lu, and D. L. Akins, “Carbon-supported Pt-Co alloy nanoparticles for oxygen reduction reaction,” Electrochem. Comm. 8 (2006) 1220-1224.
    50. P. Yu, M. Pemberton, and P. Plasse, “PtCo/C cathode catalyst for improved durability in PEMFCs,” J. Power Sources, 144 (2005) 11-20.
    51. H. Li, G. Sun, N. Li, S. Sun, D. Su, and Q. Xin, “Design and preparation of highly active Pt-Pd/C catalyst for the oxygen reduction reaction,” J. Phys. Chem. C, 111 (2007) 5605-5617.
    52. F. Kadirgan, S. Beyhan, and T. Atilan, “Preparation and characterization of nano-sized Pt-Pd/C catalysts and comparison of their electro-activity toward methanol and ethanol oxidation,” Int. J. Hydrogen Energy, 34 (2009) 4312-4320.
    53. B. Moreno, E. Chinarro, J. C. Pérez, and J. R. Jurado, “Combustion synthesis and electrochemical characterization of Pt-Ru-Ni anode electrocatalyst for PEMFC,” Appl. Catal., B, 76 (2007) 368-374.
    54. J. Luo, L. Wang, D. Mott, P. N. Njoki, N. Kariuki, C. J. Zhong, and T. He, “Ternary alloy nanoparticles with controllable sizes and composition and electrocatalytic activity,” J. Mater. Chem., 16 (2006) 1665-1673.
    55. H. Schulenburg, S. Stankov, V. Schünemann, J. Radnik, I. Dorbandt, S. Fiechter, P. Bogdanoff, and H. Tributsch, “Catalyst for the oxygen reduction from heat-Treated iron(III) Tetramethoxyphenylporphyrin chloride:structure and stability of active sites,” J. Phys. Chem. B, 107 (2003) 9034-9041.
    56. R. Bashyam and P. Zelenay, “A class of non-precious metal composite catalysts for fuel cells,” Nature, 443 (2006) 63-66.
    57. H. Zhong, H. Zhang, G. Liu, Y. Liang, J. Hu, and B. Yi, “A novel non-noble electrocatalyst for PEM fuel cell based on molybdenum nitride,” Electrochem. Commun., 8 (2006) 707-712.
    58. K. Kinoshita, “Particle size effects for oxygen reduction on highly dispersed platinum in acid electrolytes,” J. Electrochem. Soc., 137 (1990) 845-848.
    59. S. Y. Cha, and W. M. Lee, “Performance of proton exchange membrane fuel cell electrodes prepared by direct deposition of ultrathin platinum on membrane surface,” J. Electrochem. Soc., 146 (1999) 4055-4060.
    60. K. Y. Chan, J. Ding, J. Ren, S. Cheng, and K. Y. Tsang, “Supported mixed metal nanoparticles as electrocatalysts in low temperature fuel cells,” J. Mater. Chem., 14 (2004) 505-516.
    61. S. T. Christensen, J. W. Elam, F. A. Rabuffetti, Q. Ma, S. J. Weigand, B. Lee, S. Seifert, P. C. Stair, K. R. Poeppelmeier, M. C. Hersam, and M. J. Bedzyk, “Controlled growth of platinum nanoparticles on strontium titanate nanocubes by atomic layer deposition,” Small, 5 (2009) 750-757.
    62. J. S. King, A. Wittstock, J. Biener, S. O. Kucheyev, Y. M. Wang, T. F. Baumann, S. K. Giri, Al. V. Hamza, M. Baeumer, and S. F. Bent, “Ultralow loading Pt nanocatalysts prepared by atomic layer deposition on carbon aerogels,” Nano Lett., 8 (2008) 2405-2409.
    63. A. A. Dameron, S. Pylypenko, J. B. Bult, K. C. Neyerlin, C. Engtrakul, C. Bochert, G. J. Leong, S. L. Frisco, L. Simpson, H. N. Dinh, and B. Pivovar, “Aligned carbon nanotube array functionalization for enhanced atomic layer deposition of platinum electrocatalysts,” Appl. Surf. Sci., 258 (2012) 5212-5221.
    64. B. L. Gratiet, H. Remita, G. Picq, and M. O. Delcourt, “CO-Stabilized supported Pt catalysts for fuel cells:radiolytic synthesis,” J. Catal., 164 (1996) 36-43.
    65. G. Che, B. B. Lakshmi, E. R. Fisher, and C. R. Martin, “Carbon nanotuble membranes for electrochemical energy storage and production,” Nature, 393 (1998) 346-349.
    66. G. Chen, D. A. Delafuente, S. Sarangapani, and T. E. Mallouk, “Combinatorial discovery of bifunctional oxygen reduction – water oxidation electrocatalysts for regenerative fuel cells,” Catal. Today, 60 (2001) 341-355.
    67. Z. Zhou, S. Wang, W. Zhou, G. Wang, L. Jiang, W. Li, S. Song, J. Liu, G. Sun, and Q. Xin, “Novel synthesis of highly active Pt/C cathode electrocatalyst for direct methanol fuel cell,” Chem. Commun., 13 (2003) 394-395.
    68. W. Li, C. Liang, W. Zhou, J. Qiu, Z. Zhou, G. Sun, and Q. Xin, “Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells,” J. Phys. Chem. B, 107 (2003) 6292-6299.
    69. A. K. Sahu, P. Sridhar, and S. Pitchumani, “Mesoporous carbon for polymer electrolyte fuel cell electrodes,” J. Indian Inst. Sci., 89 (2012) 437-445.
    70. C. A. Bessel, K. Laubernds, N. M. Rodriguez, R. Terry, and K. Baker, “Graphite nanofibers as an electrode for fuel cell applications,” J. Phys. Chem. B, 105 (2001) 1115-1118.
    71. M. M. Waje, X. Wang, W. Li, and Y. Yan, “Deposition of platinum nanoparticles on organic functionalized carbon nanotubes grown in situ on carbon paper for fuel cells,” Nanotechnology, 16 (2005) 395-398.
    72. C. Wang, M. Waje, X. Wang, J. M. Tang, R. C. Haddon, and Y. Yan, “Proton exchange membrane fuel cells with carbon nanotube based electrodes,” Nano Lett., 4 (2004) 345-348.
    73. C. Liu, C. C. Wang, C. C. Kei, Y. C. Hsueh, and T. P. Perng, “Atomic layer deposition of platinum nanoparticles on carbon nanotubes for application in proton-exchange membrane fuel cells,” Small, 5 (2009) 1535-1538.
    74. B. Segar and P. V. Kamat, “Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells,” J. Phys. Chem. C, 113 (2009) 7990-7995.
    75. X. Wang, W. Li, Z. Chen, M. Waje, and Y. Yan, “Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell,” J. Power Sources, 158 (2006) 154-159.
    76. Y. Shao, G. Yin, and Y. Gao, “Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell,” J. Power Sources, 171 (2007) 558-566.
    77. S. Maass, F. Finsterwalder, G. Frank, R. Hartmann, and C. Merten, “Carbon support oxidation in PEM fuel cell cathodes,” J. Power Sources, 176 (2008) 444-451.
    78. M. Michel, F. Ettingshausen, F. Scheiba, A. Wolz, and C. Roth, “Using layer-by-layer assembly of polyaniline fibers in the fast preparation of high performance fuel cell nanostructured membrane electrodes,” Phys. Chem. Chem. Phys., 10 (2008) 3796-3801.
    79. S. Sharma and B. G. Pollet, “Support materials for PEMFC and DMFC electrocatalysts – a review,” J. Power Sources, 208 (2012) 96-119.
    80. M. Ritala, M. Leskelä, E. Nykänen, P. Soininen, and L. Niinistö, “Growth of titanium dioxide thin films by atomic layer epitaxy,” Thin Solid Films, 225 (1993) 288-295.
    81. X. Liang, D. M. King, P. Li, and A. W. Weimer, “Low-temperature atomic layer-deposited TiO2 films with low photoactivity,” J. Am. Ceram. Soc., 92 (2009) 649-654.
    82. T. Nam, J. M. Kim, M. K. Kim, H. Kim, and W. H. Kim, “Low-temperature atomic layer deposition of TiO2, Al2O3 and ZnO thin films,” J. Korean Chem. Soc., 59 (2011) 452-457.
    83. T. Aaltonen, M. Ritala, T. Sajavaara, J. Keinonen, and M. Leskelä, “Atomic layer deposition of platinum thin films,” Chem. Mater., 15 (2003) 1924-1928.
    84. T. Aaltonen, M. Ritala, Y. L. Tung, Y. Chi, K. Arstila, K. Meinander, and M. Leskelä, “Atomic layer deposition of noble metals:exploration of the low limit of the deposition temperature,” J. Mater. Res., 19 (2004) 3353-3358.
    85. A. J. M. Mackus, D. Garcia-Alonso, H. C. M. Knoops, A. A. Bol, and W. M. M. Kessels, “Room-temperature atomic layer deposition of platinum,” Chem. Mater., 25 (2013) 1769-1774.
    86. F. Memioğlua, A. Bayrakçeken, T. Öznülüerb, and M. Ak, “Synthesis and characterization of polypyrrole/carbon composite as a catalyst support for fuel cell applications,” Int. J. Hydrogen Energy, 37 (2012) 16673-16679.
    87. A. Pozio, M. D. Francesco, A. Cemmi, F. Cardellini, and L. Giorgi, “Comparison of high surface Pt/C catalysts by cyclic voltammetry,” J. Power Sources, 105 (2002) 13-19.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE