簡易檢索 / 詳目顯示

研究生: 楊諺翎
Yang, Yen-Lin
論文名稱: 以化學氣相傳輸法製備單晶β-FeSi2奈米線及其性質量測
Synthesis and Properties of Single-Crystal β-FeSi2 Nanowires by Chemical Vapor Transport Method
指導教授: 陳建瑞
Chen, Jiann-Ruey
鄧希平
Teng, Shi-Ping
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 87
中文關鍵詞: 二矽化鐵奈米線化學氣相傳輸法半導體矽化物
外文關鍵詞: Iron silicide, nanowires(NWs), Chemical vapor transport(CVT) method, Semiconducting silicide
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾十年來,許多種材料的奈米線受到廣泛地討論,而金屬矽化物與純金屬比較,具有較好的熱穩定性和不容易被氧化的特性,且有較佳的抗腐蝕能力;且大部分的金屬氧化物相對於金屬也具有較低的電阻。所以金屬矽化物也是第一個被應用MOS結構中的閘極(gate)、ohmic contacts、光電元件、熱電元件和 Scotty barriers的材料。而最近有許多過渡金屬矽化物,例如:NiSi、CoSi2、TiSi等,皆以化學合成方式被製備出來。
    至今,β-FeSi2所有過渡金屬矽化物中唯一被拿來應用在LED元件裡的材料,而從Fe-Si的相圖中,我們可以看到Fe與Si有許多不同的相,例如Fe3Si、FeSi2、Fe5Si3、FeS等;顯示了Fe、Si系統在不同成分比例組成下的複雜性。在這個實驗中,我們以化學氣相傳輸法(chemical vapor transport, CVT)合成β-FeSi2奈米線,此實驗是以FeCl3作為前驅物,並將成長溫度設定在840~900°C,成長時間設定在2到4小時之間,且以80% Ar和20%H2混合氣體當作載流氣體(carrier gas),反應壓力控制在1 torr左右,成功地在Si基板上生成β-FeSi2奈米線。
    我們分別以XRD、SEM、EDX、ESCA和TEM對奈米線作結構、形貌與成分的鑑定,XRD顯示出β-FeSi2相的存在;SEM則是發現在成長奈米線前,Si基板上會先成長一層約2~3μm的β-FeSi2薄膜,再成長β-FeSi2奈米線,且奈米線的長度約為5~數十μm,直徑約為100nm;在EDX的分析中,我們可以知道奈米線的組成中,有Si、Fe和O三種元素,且Si的比例遠多於Fe;且以ESCA對試片表面去作分析;在TEM的分析中,我們可以得知奈米線的成長方向為<321 ̅>,且在外層會有一層薄薄的SiO2層,而在I-V電性量測下,可以得到β-FeSi2奈米線的電阻率約為3006μΩ-cm,略低β-FeSi2塊材之電阻率。
    雖然到目前為止,矽化鐵奈米結構的生成機制尚不明朗,但是有不同的文獻指出在謹慎小心地控制溫度、壓力、載流氣體流量等基本參數,依舊可以利用CVT法合成出形貌為一維的奈米線或是奈米螺旋狀結構。


    致謝 I 中文摘要 III Abstract V 目錄 VII 圖目錄 IX 表目錄 XII 1. 簡介 1 1.1. 奈米科技的發展 1 1.2. 奈米結構 1 1.2.1. 零維奈米結構 2 1.2.2. 一維奈米結構 2 1.2.3. 二維奈米結構 3 1.3. 半導體 3 1.3.1. 元素半導體 4 1.3.2. 化合物半導體 4 1.4. 半導體元件 5 1.5. 矽化物 7 1.6. 金屬矽化物 8 1.6.1. Fe/Si系統 8 1.6.2. β-FeSi2簡介 10 1.6.3. β-FeSi2和Si基材的錯合度(Mismatch) 12 1.7. 奈米線的合成方法和成長機制 14 1.7.1. 氣相沉積法 14 1.7.1.1. 氣相-液相-固相成長法(vapor-liquid-solid method, VLS method) 14 1.7.1.2. 氣相-固相成長法(vapor-solid method, VS method) 19 1.7.1.2. 自催性氣相-液相-固相成長法(self-catalytic vapor-liquid-solid method, self-catalytic VLS method) 21 1.7.1.3. 氧輔助成長機制(Oxide-Assisted Growth, OAG) 21 1.7.2. 液相沉積法 23 1.7.2.1. ”毒化”晶面控制生長法 23 1.7.2.2. 溶液-液相-固相成長法(solution-liquid-solid method) 25 1.7.3. 模板法製備 26 1.7.3.1. 陽極氧化鋁(anodic aluminum oxide, AAO)模板製備 26 1.7.3.2. 表面活性劑模板製備 28 1.8. 研究動機 29 2. 實驗方法與材料 30 2.1. 實驗化學試藥 30 2.2. 實驗器材與設備 30 2.3. 實驗步驟 30 2.3.1. 試片清洗 30 2.3.2. 試片與前驅物之放置 31 2.3.3. 壓力及載流氣體流量的控制 31 2.3.4. 爐管加熱與退火 31 2.3.5. 爐管清洗 32 2.4. 分析儀器 32 2.4.1. X光繞射分析儀(X-ray Diffraction, XRD) 32 2.4.2. 掃描式電子顯微鏡(Scanning electron microscopy, SEM) 33 2.4.3. 能量散佈分析儀 (Energy dispersive x-ray spectroscopy, EDX/EDS) 34 2.4.4. 化學分析電子儀(Energy spectroscopy for chemical analysis, ESCA) 36 2.4.5. 穿透式電子顯微鏡(Transmission electron microscopy, TEM) 36 2.4.6. 電性量測 37 3. 分析方法與結果及實驗討論 39 3.1. X-ray Diffraction (XRD)結果 39 3.2. Scanning electron microscopy (SEM)結果 42 3.3. Energy dispersive x-ray spectroscopy (EDX or EDS)結果 50 3.4. Energy spectroscopy for chemical analysis (ESCA)結果 56 3.5. Transmission electron microscopy (TEM)結果 63 3.6. 電性量測結果 76 4. 總結 79 參考文獻 80

    [1] S. L. Zhang, M. Ostling. "Metal Silicides in CMOS Technology: Past, Present, and Future Trends.". Crit. Rev. Solid State. (2003), Vol. 28, pp. 1–129.
    [2] S. Senthilarasu, R. Sathyamoorthy, S. Lalitha. "Synthesis and Characterization of Β-FeSi2 Grown by Tthermal Annealing of Fe/Si Bilayers for Photovoltaic Applications.". Sol. Energy Mater. Sol. Cells. (2004), Vol. 82, pp. 299–305.
    [3] B. E. Borisenko. "Semiconducting Silicides.". Springer. (2000), Vol. 39, p. 348.
    [4] C. J. Kim, K. Kang, Y. S. Woo, G. H. Ryu, H. Moon, J. M. Kim, D. S. Zang, M. H. Jo. "Spontaneous Chemical Vapor Growth of NiSi Nanowires and Their Metallic Properties.". Adv. Mater. (2007), Vol. 19, pp. 3637–3642.
    [5] C. Y. Lee, M. P. Lu, K. F. Liao, W. F. Lee, C. T. Huang, S. Y. Chen, L. J. Chen. "Free-Standing Single-Crystal NiSi Nanowires with Excellent Electrical Transport and Field Emission Properties.". J.Phys.Chem.C. (2009), Vol. 113, pp. 2286–2289.
    [6] K. Seo, K. S. K. Varadwaj, P. Mohanty, S. H. Lee, Y. H. Jo, M. H. Jung, J. H. Kim, B. S. Kim. "Magnetic Properties of Single-Crystalline CoSi Nanowires.". Nano. Lett. (2007), Vol. 7, pp. 1240-1245.
    [7] P. Kluth, Q. T. Zhao, S. Winnerl, S. Lenk, S. Mantl. "Fabrication of Epitaxial CoSi2 Nanowires.". Appl. Phys. Lett. (2001), Vol. 79, pp. 824-826.
    [8] B. Xiang, Q. X. Wang, Z. Wang, X. Z. Zhang, L. Q. Liu, J. Xu, D. P. Yu. "Synthesis and Field Emission Properties of TiSi2 Nanowires.". Appl. Phys. Lett. (2005), Vol. 86, p. 243103.
    [9] D. Leong, M. Harry, K. J. Reeson, K. P. Homewood. "A Silicon/iron-disilicide Light-emitting Diode Operating at a Wavelength of 1.5μm.". NATURE. (1997), Vol. 387, pp. 686-688.
    [10] T. W. Ebbesen, P. M. Ajayan. "Large-scale Synthesis of Carbon Nanotubes.". Nature. (1992), Vol. 358, pp. 220-222 .
    [11] R. F. Pierret. "Semiconductor Device Fundamentals.". Boston MA : Addison Wesley, (1996).
    [12] "Electronic Market Data Book". Washington, D.C. : Electron. Ind. Assoc., (2000).
    [13] "Semiconductor Industry Report". Hsinchu, Taiwan : Inst., Ind. Technol. Res., (2000).
    [14] Most of the classic device papers are collected in S. M. Sze, Ed., Semiconductor Devices: Pioneering Papers, World Sci., Singapore. (1991).
    [15] K. K. Ng. "Complete Guild to Semiconductor Devices". New York : McGraw-Hill, (1995).
    [16] D. Kahng, M. M. Atalla. "Silicon-silicon Dioxide Field Induced Surface Devices.". Proc. IRE-AIEE Solid-State Device Res. (1960).
    [17] H. V. Kanel, N. Onda, H. Sirringhaus, E. Mullergubler, S. Goncalvesconto, C. Schwarz. "Epitaxial Phase Transitions in the Iron Silicon System.". Appl. Surf. Sci. (1993), Vol. 70/71, pp. 559-561.
    [18] J. Desimoni, H. Bernas, M. Behar, X. W. Lin, S. Washburn, Z. Lilientalweber. "Ion-Beam Synthesis of Cubic FeSi2.". Appl. Phys. Lett. (1993), Vol. 62, pp. 306-308.
    [19] J. Alvarez, J. J. Hinarejos, E. G. Michel, R. Miranda. "Determination of the Fe/Si(111) Phase Diagram by Means of Photoelectron Spectroscopies.". Surf. Sci. (1993), Vol. 287, pp. 490-494.
    [20] N. E. Christensen. "Electronic-Structure of Β-FeSi2.". Phys. Rev. B. (1990), Vol. 42, pp. 7148-7153.
    [21] M. Libezny, J. Poortmans, T. Vermeulen, J. Nijs, P. H. Amesz, K. Herz, M. Powalla. "Book of Abstracts of 13th European Photovoltaic Solar Energy Conference and Exhibition.". (1995), Vol. 49, p. PO8B.
    [22] "Proc. of 13th European Photovoltaic Solar Energy Conf.". (1995), p. 1326.
    [23] M. Riffel, E. Gross,U. Stohrer. "Electrical Contacts for FeSi2 and Higher Manganese Silicide Thermoelectric Elements.". J. Mater. Sci. Mater. Electron. (1995), Vol. 6, pp. 182-185.
    [24] T. Suemasu, Y. Negishi, K. Takakura, F. Hasegawa. "Room Temperature 1.6 μm Electroluminescence from a Si-based Light Emitting Diode with Β-FeSi2 Active Region.". Jpn. J. Appl. Phys. (2000), Vol. 39, pp. 1013-1015.
    [25] K. M. Geib, J. E. Mahan, R. G. Long, M. Naten, G. Bai. "Epitaxial Orientation and Morphology of β-FeSi2 on (001) Silicon.". J. Appl. Phys. (1991), Vol. 70, pp. 1730-1736 .
    [26] Y. Wu, R. Fan, P. Yang. "Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires.". Nano. Lett. (2002), Vol. 2, pp. 83-86.
    [27] Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, H. Y. Lee, G. S. Park, W. B. Choi, N. S. Lee, J. M. Kim. "Catalytic Growth of β-Ga2O3 Nanowires by Arc Discharge.". Adv. Mater. (2000), Vol. 12, pp. 746-750.
    [28] J. Graul, E.Wagner. "Growth Mechanism of Polycrystalline Β-SiC Layers on Silicon Substrate.". Appl. Phys. Lett. (1972), Vol. 21, pp. 67-69.
    [29] Y. Y. Wu, P. D. Yang. "Direct Observation of Vapor-Liquid-Solid Nanowire Growth.". J. Am. Soc. (2001), Vol. 123, pp. 3165-3166.
    [30] A. M. Morales, C. M. Lieber. "A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires.". Science. (1998), Vol. 279, pp. 208-211.
    [31] T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, W. E. Buhro. "Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth.". Science. (1995), Vol. 270, pp. 1791-1794.
    [32] Y. W. Wang, L. Zhang, C. H. Liang, G. H. Wang, X. S. Peng. "Catalytic Growth and Photoluminescence Properties of Semiconductor Single-crystal ZnS Nanowires.". Chen. Phys. Lett. (2002), Vol. 357, pp. 314–318.
    [33] Y. W. Wang, G. W. Meng, L. Zhang, C. H. Liang, J. Zhang. "Catalytic Growth of Large-Scale Single-Crystal CdS Nanowires by Physical Evaporation and Their Photoluminescence.". Chem. Mater. (2002), Vol. 14, p. 1773-1777
    [34] Y. Q. Chen, X. F. Cui, K. Zhang, D. G. Pan, S. Y. Zhang, B. Wang, J. G. Hou. "Bulk-quantity Synthesis and Self-catalytic VLS Growth of SnO2 Nanowires by Lower-temperature Evaporation.". Chem. Phys. Lett. (2003), Vol. 369, pp. 16–20.
    [35] H. Y. Peng, N.Wang, X. T. Zhou, Y. F. Zheng, C. S. Lee, S. T. Lee. "Control of Growth Orientation of GaN Nanowires.". Chem. Phys. Lett. (2002), Vol. 359, pp. 241–245.
    [36] T. I. Kamins, X. Li, R. S.Williams. "Growth and Structure of Chemically Vapor Deposited Ge Nanowires on Si Substrates.". Nano. Lett. (2004), Vol. 4, pp. 503-506.
    [37] S. K. Lee, , H. J. Choi, P. Pauzauskie, P. D. Yang, N. K. Cho, H. D. Park, E. K. Suh, K. Y. Lim, H. J. Lee. "Gallium Nitride Nanowires with a Metal Initiated Metal-organic Chemical Vapor Deposition (MOCVD) Approach.". Phys. Status Solid B. (2004), Vol. 241, pp. 2775–2778.
    [38] T. T. Kang, X. Liu, R. Q. Zhang, et al. "InN Nanoflowers Grown by Metal Organic Chemical Vapor Deposition.". Appl. Phys. Lett. (2005), Vol. 89, p. 071113.
    [39] Y. Wu, B. Messer, P. Yang. "Superconducting MgB2 Nanowires.". Adv. Mater. (2001), Vol. 13, pp. 1487-1489.
    [40] Y. Y. Wu, P. D. Yang. "Direct Observation of Vapor-Liquid-Solid Nanowire Growth.". J. Am. Chem. Soc. (2001), Vol. 123, pp. 3165-3166.
    [41] C. C. Chen, C. C. Yeh. "Large-Scale Catalytic Synthesis of Crystalline Gallium Nitride Nanowires.". Adv. Mater. (2000), Vol. 12, pp. 738-741.
    [42] M. H. Huang, Y. Wu, H. Feick, W. Weber, P. Yang. "Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport.". Adv. Mater. (2001), Vol. 13, pp. 113-116.
    [43] M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, K. Hiruma. "Effect of One Monolayer of Surface Gold Atoms on the Epitaxial Growth of InAs Nanowhiskers.". Appl. Phys. Lett. (1992), Vol. 61, pp. 2051-2053.
    [44] Z. H. Lan, C. H. Liang, C. W. Hsu , C. T. Wu , H. M. Lin , S. Dhara , K. H. Chen, L. C. Chen , C. C. Chen. "Nanohomojunction (GaN) and Nanoheterojunction (InN) Nanorods on One-dimensional GaN Nanowire Substrates.". Adv. Funct. Mater. (2004), Vol. 14, pp. 233-237.
    [45] X. F. Duan, Y. Huang, Y. Cui, et al. "Indium Phosphide Nanowires as Building Blocks for Nanoscale Electronic and Optoelectronic Devices.". NATURE. (2001), Vol. 409, pp. 66-69.
    [46] Y. Cui, C. M. Lieber. "Functional Nanoscale Electronic Devices Assembled using Silicon Nanowire Building Blocks.". SCIENCE. (2001), Vol. 291, pp. 851-853.
    [47] Y. Cui, L. J. Lauhon, M. S. Gudiksen, et al. "Diameter-controlled Synthesis of Single-crystal Silicon Nanowires.". Appl. Phys. Lett. (2001), Vol. 78, pp. 2214-2216.
    [48] Y. Cui, X. F. Duan, J. T. Hu, et al. "Doping and Electrical Transport in Silicon Nanowires.". J. Phys. Chem. B. (2000), Vol. 104, pp. 5213-5216.
    [49] Z. W. Pan, Z. R. Dai, Z. L. Wang. "Nanobelts of Semiconducting Oxides.". SCIENCE. (2001), Vol. 291, pp. 1947-1949.
    [50] Y. Qin, X. D. Wang, Z. L. Wang. "Microfibre-nanowire Hybrid Structure for Energy Scavenging.". NATURE. (2008), Vol. 451, pp. 809-U5.
    [51] Z. L. Wang. "The New Field of Nanopiezotronics.". MATERIALS TODAY. (2007), Vol. 10, pp. 20-28.
    [52] Z. L. Wang. "Nanopiezotronics.". Adv. Mater. (2007), Vol. 19, pp. 889-892.
    [53] P. X. Gao, J. H. Song, J. Liu, Z. L. Wang. "Nanowire Piezoelectric Nanogenerators on Plastic Substrates as Flexible Power Sources for Nanodevices.". Adv. Mater. (2007), Vol. 19, pp. 67–72.
    [54] Z. L. Wang, J. H. Song. "Piezoelectric Nanogenerators Based on Zinc oxide Nanowire Arrays.". SCIENCE. (2006), Vol. 312, pp. 242-246.
    [55] X. D. Wang, J. Zhou, J. H. Song, J. Liu, N. S. Xu, Z. L.Wang. "Piezoelectric Field Effect Transistor and Nanoforce Sensor Based on a Single ZnO Nanowire.". Nano. Lett. (2006), Vol. 6, pp. 2768-2772.
    [56] J. H. Song, J. Zhou, Z. L. Wang. "Piezoelectric and Semiconducting Coupled Power Generating Process of a Single ZnO Belt/wire. A Technology for Harvesting Electricity from the Environment.". Nano. Lett. (2006), Vol. 6, pp. 1656-1662.
    [57] B. A. Buchine, W. L. Hughes, F. L. Degertekin, Z. L. Wang. "Bulk Acoustic Resonator Based on Piezoelectric ZnO Belts.". Nano. Lett. (2006), Vol. 6, pp. 1155-1159.
    [58] Z. L. Wang. "Zinc Oxide Nanostructures: Growth, Properties and Applications.". J Phys.-Consens. Mat. (2004), Vol. 16, pp. R829-R858.
    [59] Z. R. Dai, Z. W. Pan, Z. L. Wang. "Ultra-long Single Crystalline Nanoribbons of Tin oxide.". Solid State Commun. (2001), Vol. 118, pp. 351-354.
    [60] Y. Huang, S. L. Yue, Z. L. Wang, Q. Wang, C. Y. Shi, Z. Xu, X. D. Bai, C. C. Tang, C. Z. Gu. "Preparation and Electrical Properties of Ultrafine Ga2O3 Nanowires.". J. Phys. Chem. B. (2006), Vol. 110, pp. 796-800.
    [61] N. D. Zakharov, P. Werner , G. Gerth , L. Schubert, L. Sokolov , U. Gosele. "Growth Phenomena of Si and Si/Ge Nanowires on Si(111) by Molecular Beam Epitaxy.". J. Cryst. Growth. (2006), Vol. 290, pp. 6-10.
    [62] S. Kar, B. N. Pal , S. Chaudhuri, D. Chakravorty. "One-dimensional ZnO Nanostructure Arrays: Synthesis and Characterization.". J. Phys. Chem. B. (2006), Vol. 110, pp. 4605-4611.
    [63] Z. H. Lan, C. H. Liang, C. W. Hsu , C. T. Wu , H. M. Lin , S. Dhara , K. H. Chen, L. C. Chen , C. C. Chen. "Nanohomojunction (GaN) and Nanoheterojunction (InN) Nanorods on One-dimensional GaN Nanowire Substrates.". Adv. Funct. Mater. (2004), Vol. 14, pp. 233-237.
    [64] S. K. Chan, N. Liu , Y. Cai , N. Wang , G.. K. L. Wong , I. K. Sou. "Molecular Beam Epitaxy-grown ZnSe Nanowires.". J. Electron Mater. (2006), Vol. 35, pp. 1246-1250.
    [65] R. Q. Zhang, Y. Lifshitz, S. T. Lee. "Oxide-Assisted Semiconductor Nanowire Growth.". Adv. Mater. (2003), Vol. 15, pp. 635-640.
    [66] Y. D. Yin, D. G. Zhang, Y. N. Xia. "Synthesis, and Characterization of MgO Nanowires through a Vapor-Phase Precusor Mthod.". Adv. Funct. Mater. (2002), Vol. 12, pp. 293-298.
    [67] W. S. Shi, H. Y. Peng, N. Wang, C. P. Li, L. Xu, C. S. Lee, R. Kalish, S. T. Lee. "Free-Standing Single Crystal Silicon Nanoribbons.". J. Am. Chem. Soc. (2001), Vol. 123, pp. 11095-11096.
    [68] S. T. Lee, N. Wang, C. S. Lee. "Semiconductor Nanowires: Synthesis, Structure and Properties.". Mater. Sci. Eng. A. (2000), Vol. 286, pp. 16-23.
    [69] N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, I. Bello, S. T. Lee. "Si Nanowires Grown from Silicon Oxide.". Chem. Phys. Lett. (1999), Vol. 299, pp. 237-242 .
    [70] Y. G. Sun, Y. N. Xia. "Large-scale Synthesis of Uniform Silver Nanowires Through a Soft, Self-seeding, Polyol Process.". Adv. Mater. (2002), Vol. 14, pp. 833-837.
    [71] H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi, S. Q. Feng. "Growth of Amorphous Silicon Nanowires via a Solid-Liquid-Solid Mechanism.". Chem. Phys. Lett. (2002), Vol. 323, pp. 224-228.
    [72] P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yan, J. Xu, Z. H. Xi, S. Q. Feng. "Controlled Growth of Oriented Amorphous Silicon Nanowires via a Solid-Liquid-Solid (SLS) Mechanism.". Physica. E. (2001), Vol. 9, pp. 305-309.
    [73] D. Routkevitch, T. Bigioni, M. Moskovits, J. M. Xu. "Electrochemical Fabrication of CdS Nanowire Arrays in Porous Anodic Aluminum Oxide Templates.". J. Phys. Chem. (1996), Vol. 100, pp. 14037-14047.
    [74] J. S. Lee, G. H. Gu, H. Kim, K. S. Jeong, J. Bae, J. S. Suh. "Growth of Carbon Nanotubes on Anodic Aluminum Oxide Templates: Fabrication of a Tube-in-tube and Linearly Joined Tube.". Chem. Mater. (2001), Vol. 13, pp. 2387-2391.
    [75] K. T. Yong, Y. Sahoo, M. T. Swihart, P. M. Schneeberger, P. N. Prasad. "Templated Synthesis of Gold Nanorods (NRs): The Effects of Cosurfactants and Electrolytes on the Shape and Optical Properties.". Top Catal. (2008), Vol. 47, pp. 49-60.
    [76] L. Ouyang, E. S. Thrall, M. M. Deshmukh, H. Park. "Vapor-Phase Synthesis and Characterization of e-FeSi Nanowires.". Adv.Mater. (2006), Vol. 18, pp. 1437–1440.
    [77] N. E. Christensen. "Electronic-Structure of Β-FeSi2.". Phys. Rev. B. (1990), Vol. 42, pp. 7148-7153.
    [78] R. Eppenga. "Ab Initio Band-Structure Calculation of the Semiconductor β-FeSi2.". J. Appl. Phys. (1990), Vol. 68, pp. 3027-3029.
    [79] Z. Yang, K. P. Homewood, M. S. Finney, M. A. Harry, K. J. Resson. "Optical Absorption Study of Ion Beam Synthesized Polycrystalline Semiconducting FeSi2.". J. Appl. Phys. (1995), Vol. 78, pp. 1958-1963.
    [80] C. A. Dimitriadis, J. H. Werner, S. Logothtidis, M. Stutzmann, J. Weber, R. Nesper. "Electronic Properties of Semiconducting FeSi2 Films.". J. Appl. Phys. (1990), Vol. 68, pp. 1726-1734.
    [81] M. C. Bost, J. E. Mahan. "A Clarification of the Index of Refraction of Β-Iron Disilicide.". J. Appl. Phys. (1998), Vol. 64, pp. 2034-2037.
    [82] G. Aeppli, J. F. DiTusa. "Undoped and doped FeSi or how to make a heavy fermion metal with three of the most common elements.". Mater. Sci. Eng. B (1999), Vol.63, pp.119.
    [83] A. L.Schmitt, M. J.Bierman, D. Schmeisser, F.J.Himpsel, S. Jin. "Synthesis and Properties of Single-Crystal FeSi Nanowires.". Nano Letters. (2006), Vol.6, pp. 1617 -1621.
    [84] K. Seo, S. Lee, Y. Jo, M. H. Jung, J. Kim, D. G. Churchill, U. Kim. "Room Temperature Ferromagnetism in Single-Crystalline Fe5Si3 Nanowires." J. Phys. Chem. C. (2009), Vol.113, pp. 6902-6905.
    [85] J. I. Tani, H. Kido. "Electrical properties of Co-doped and Ni-doped b-FeSi2. ". J. Appl. Phys. (1998), Vol.84, pp.1408-1411.
    [86] G. Ottaviani, K. N. Tu, P. Psaras, C. Nobili. "In Situ Resistivity Measurement of Cobalt Silicide Formation.". J. Appl. Phys., (1987), Vol.62, pp.2290-2294.
    [87] C. I. Tsai, P. H. Yeh, C. Y. Wang, H. W. Wu, U. S. Chen, M. Y. Lu, W. W. Wu, L. J. Chen, Z. L. Wang. "Cobalt Silicide Nanostructures: Synthesis, Electron Transport, and Field Emission Properties.", Cryst. Growth Des., (2009), Vol.9, pp.4514-4518.
    [88] R. A. Donatona, K. Maexb. "Co Silicide Formation on SiGeC/Si and SiGe/Si Layers.". Appl. Phys. Lett., (2007), Vol.70, pp.1266-1268.
    [89] A. L. Schmitt, L. Zhu, D. Schmeisser, F. J. Himpsel, S. Jin. " Metallic Single-Crystal CoSi Nanowires via Chemical Vapor Deposition of Single-source Precursor .". J. Phys. Chem. B, (2006), Vol.110, pp. 18142-18146.
    [90] K. Maex,V. R. M. "Properties of Metal Silicides", INSPEC, The Institution of Electrical Engineers, London,(1995)
    [91] Y. P. Song, A. L. Schmitt, S. Jin. "Ultralong Single-Crystal Metallic Ni2Si
    Nanowires with Low Resistivity.". Nano Lett. (2009), Vol.7, pp.965-969.
    [92] K. Y. Seo, S. H. Lee, H. Yoon, J. H. In, K. S. K. Varadwaj, Y. H. Jo, M. H. Jung, J. H. Kim, B. S. Kim. "Composition-Tuned ConSi Nanowires: Location-Selective Simultaneous Growth along Temperature Gradient.". ACS NANO. (2009), Vol.3, pp.1145–1150.
    [93] C. Y. Lee, M. P. Lu, K. F. Liao, W. W. Wu, L. J. Chen. "Vertically Well-aligned Epitaxial Ni31Si12 Nanowire Arrays with Excellent Field Emission Properties.". Appl. Phys. Lett., (2008), Vol.93, pp.113109.
    [94] T. Iijima, A. Nishiyama, Y. Ushiku, T. Ohpro. I. Kunishima, K. Suguro, H. Iwai. "A Novel Selective Ni3Si Contact Plug Technique for Deep-submicron ULSIs.". IEEE, (1992), pp.70-71.
    [95] Y. P. Song, S. Jin. "Synthesis and Properties of Single-crystal β-3-Ni3Si nanowires.". Appl. Phys. Lett., (2007), Vol.90, pp.173122.
    [96] T. C. Banwell, X. A. Zhao, M. A. Nicolet. "Effects of Gon Irradiation on Conductivity of CrSi2 Thin Films.". J. Appl. Phys., (1986), Vol.59, pp.3077-3080
    [97] K. Y. Seo, S. K. Varadwaj, D. K. Cha, J. H. In, J. Y. Kim, J. H. Park, B. S. Kim. "SynthesisandElectricalPropertiesofSingleCrystallineCrSi2 Nanowires.". J. Phys. Chem. C, (2007), Vol.111, pp.9072-9076.
    [98] J. Hu, M. Ameen, G. Leusink, D. Webb, J. T. Hillman. " Electrical Properties of Ti/TiN Films Prepared by Chemical Vapor Deposition and Their Applications in Submicron Structures as Contact and Barrier Materials.". Thin Solid Films, (1997), Vol.308, pp. 589-593.
    [99] C. M. Chang, Y. C. Chang, Y. A. Chung, C. Y. Lee, L. J. Chen. "Synthesis and Properties of the Low Resistivity TiSi2 Nanowires Grown with TiF4 Precursor .". J. Phys. Chem. C. (2009), Vol.113, pp.17720-17723
    [100] J. M. Higgins, A. L. Schmitt, I. A. Guzei, S. Jin. "Higher Manganese Silicide Nanowires of Nowotny Chimney Ladder Phase.". J. Am. Chem. Soc. (2007), Vol.130, pp.16086–16094.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE