研究生: |
黃筱芳 Huang, Siao-Fang |
---|---|
論文名稱: |
新型均熱板之性能測試 Performance Tests on a Novel Vapor Chamber |
指導教授: |
王訓忠
Wong, Shwin-Chung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 72 |
中文關鍵詞: | 均熱板 、加熱面積 、工作流體 、複合式毛細結構 、熱管 、熱阻值 |
外文關鍵詞: | vapor chamber, heating area, working fluid, composite wick, heat pipe, resistance |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對一矩型(80mm×100mm)均熱板進行性能測試,此均熱板利用上板平行溝槽取代傳統上板毛細結構,可降低均熱板厚度並提升均熱板的熱傳極限。本實驗毛細結構是以100 mesh及200 mesh之銅網搭配並與底板一併燒結,以銅鳍片搭配軸流風扇作為散熱裝置,測試均熱板於不同工作流體(水、甲醇及丙酮)和不同加熱面積(11mm×11mm、21mm×21mm及31mm×31mm)下之性能表現;接著以水作為工作流體、加熱面積21mm×21mm下,研究燒結銅網/銅粉複合式毛細結構之性能。為可重複使用,本實驗採用O環密封的均熱板,在抽真空後內部注入適當容量之除氣工作流體。結果顯示以水作為工作流體之均熱板性能最佳,因其具有較低的最低熱阻值及較大的熱傳極限,甲醇次之,而丙酮最差;不同加熱面積方面,可知加熱面積越大,其最低熱阻值越小,且熱傳極限越大。而在複合式毛細結構部份,測試不同網目之銅網填入銅粉後之性能,當加熱面積為21mm×21mm時,若採用單層銅網/銅粉複合式毛細結構,毛細厚度較小的銅網(200mesh)會因流阻變大使得熱傳極限降低;在多層銅網/銅粉之複合式毛細結構下,則因流體流過之等效截面積較大,於蒸發區添加銅粉可使毛細力增加,進而提升熱傳極限。
[1] S.-C. Wong, J.-D. Wu, W.-L. Han, Experiments on a novel vapor chamber, ITHERM 2008 Conference, Orlando, FL, USA, May 28-31, 2008.
[2] S.-C. Wong, K.-C. Hsieh, J.-D. Wu, Wu.-L. Han, A novel vapor chamber and its performance, submitted to Int. J. Heat Mass Transfer 53 (2010) 2377-2384.
[3] M. Mochizuki, Y. Saito, F. Kiyooka, T. Nguyen, The way we were and are going on cooling high power processors in the industries, The Seventh International Symposium in Transport Phenomena, Toyama, Japan, September 4-8, 2006.
[4] K. Grubb, CFD modeling of a Therma-Base heat sink, 8th International FLOTHERM User Conference, 1999.
[5] R. Boukhanouf, A. Haddad, M.T. North, C. Buffone, Experimental investigation of a flat plate heat pipe performance using IR thermal imaging, Applied Thermal Engineering 26 (2006) 2148–2156.
[6] J. Wei, Challenges in cooling design of CPU packages for high-performance servers, Heat Transfer Engineering 29 (2008) 178–187.
[7] G.S. Hwang, Y. Nam, E. Fleming, P. Dussinger, Y.S. Ju, M. Kaviany, Multi-artery heat pipe spreader: experiment, Int. J. Heat Mass Transfer 53 (2010) 2662-2669.
[8] J.-H. Liou, C.-W. Chang, C. Chao, S.-C. Wong, Visualization and thermal resistance measurement for the sintered mesh-wick evaporator in operating flat-plate heat pipes, Int. J. Heat Mass Transfer 53 (2010) 1498-1506.
[9] S.-C. Wong, J.-H. Liou, C.-W. Chang, Evaporation resistance measurement and visualization for sintered copper-powder evaporator in operating flat-plate heat pipes, submitted to Int. J. Heat Mass Transfer 53 (2010) 3792-3798.
[10] M. Potash, P.C. Wayner, Evaporation from a two-dimensional extended meniscus, International Journal of Heat and Mass Transfer 15 (1972) 1851-1863.
[11] C. Hohmann and P. Stephan, Microscale temperature measurement at an evaporating liquid meniscus, Experimental Thermal and Fluid Science 26 (2002) 157-162.
[12] H. Wang, S. V. Garimella , J. Y. Murthy, characteristics of an evaporating thin film in a microchannel, Int. J. Heat Mass Transfer 50 (2007) 3933–3942.
[13] R. Bertossi, V. Ayel, C. Romestant, Y. Bertin, Z. Lataoui, Modeling of transfer in the microregion in axially grooved heat pipes, comparison of fluid performances, Heat Pipe Sci. Tech. 1 (2010) 99-112.
[14] W. Qu, T. Ma , J. Miao, J. Wang, Effects of radius and heat transfer on the profile of evaporating thin liquid film and meniscus in capillary tubes, Int. J. Heat Mass Transfer 45 (2002) 1879–1887.
[15] S.-K. Wee, K. D. Kihm, K.P. Hallinan, Effects of the liquid polarity and the wall slip on the heat and mass transport characteristics of the micro-scale evaporating transition film, Int. J. Heat Mass Transfer 48 (2005) 265–278.
[16] G.P. Peterson, Y. Wang, C. Li, Evaporation/boiling in thin capillary wicks (І)–wick thickness effect, ASME Journal of Heat Transfer 128 (2006) 1312-1319.
[17] G.P. Peterson, C. Li, Evaporation boiling in thin capillary wicks (II)–effects of volumetric porosity and mesh size, ASME Journal of Heat Transfer 128 (2006) 1320-1328.
[18] Y. Wang, G.P. Peterson, Investigation of a novel flat heat pipe, ASME Journal of Heat Transfer 127 (2005) 165-170.
[19] M.A. Hanlon, H.B. Ma, Evaporation heat transfer in sintered porous media, ASME Journal of Heat Transfer 125 (2003) 644-652.
[20] Y. Wang, K. Vafai, An experimental investigation of thermal performance of an asymmetrical flat plate heat pipe, Int. J. Heat Mass Transfer 43 (2000) 2657-2668.
[21] M. Mochizuki, T. Nguyen, Y. Saito, Y. Horiuchi, K. Mashiko, T. Tanaphan, and Y. Kawahara, Latest vapor chamber technology for computer, The 8th International Heat Pipe Symposium, Japan, September, 2006.
[22] H. Agata, F. Kiyooka, M. Mochizuki, K. Mashiko, Y. Saito, Y. Kawahara, T. Nguyen, T. Nguyen, Advance thermal solution using vapor chamber technology for cooling high performance desktop cpu in notebook computer, The 1st International Symposium on Micro & Nano Technology, Honolulu, Haiwaii, USA, March 4-17, 2004.
[23] Y. Tang, D. Deng, L. Lu, M. Pan, Q Wang, Experimental investigation on capillary force of composite wick structure by IR thermal imaging camera, Experimental Thermal and Fluid Science 34 (2010) 190–196.
[24] S.W. Chi, Heat Pipe Theory and Practice, McGraw-Hill, 1976.
[25] J.S. Go, Quantitative thermal performance evaluation of a cost-effective vapor chamber heat sink containing a metal-etched microwick structure for advanced microprocessor cooling, Sensors and Actuators A 121 (2005) 549–556.
[26] K. Take, Y. Furukawa, and S. Ushioda, Fundamental investigation of roll bond heat pipe as heat spreader plate for notebook computers, IEEE Transactions on Components and Packaging Technologies 23 (2000) 80-85.
[27] S. Lips, F. Lefévre, J. Bonjour, Nucleate boiling in a flat grooved heat pipe, Int. J. Thermal Sci. 48 (2008) 1273-1278.
[28] Y. Koito, H. Imura, M. Mochizuki, Y. Saito, S. Torii, Fundamental experiments and numerical analyses on heat transfer characteristics of a vapor chamber, JSME Int. J. 49 (2006) 1233-1240.
[29] R. S. Prasher, A simplified conduction based modeling scheme for design sensitivity study of thermal solution utilizing heat pipe and vapor chamber technology, ASME Journal of Electronic Packaging 125 (2003) 378-385.
[30] J.-Y. Chang, R.S. Prasher, S. Prstic, P. Cheng, H.B. Ma, Evaporative thermal performance of vapor chambers under nonuniform heating conditions, ASME Journal of Heat Transfer 130 (2008) 121501. (9 pp.)
[31] 林宇中,平板熱管之可視化觀察與蒸發熱阻量測-不同工作流體與表面親水性之效應,國立清華大學碩士論文,2010