簡易檢索 / 詳目顯示

研究生: 黃筱芳
Huang, Siao-Fang
論文名稱: 新型均熱板之性能測試
Performance Tests on a Novel Vapor Chamber
指導教授: 王訓忠
Wong, Shwin-Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 72
中文關鍵詞: 均熱板加熱面積工作流體複合式毛細結構熱管熱阻值
外文關鍵詞: vapor chamber, heating area, working fluid, composite wick, heat pipe, resistance
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對一矩型(80mm×100mm)均熱板進行性能測試,此均熱板利用上板平行溝槽取代傳統上板毛細結構,可降低均熱板厚度並提升均熱板的熱傳極限。本實驗毛細結構是以100 mesh及200 mesh之銅網搭配並與底板一併燒結,以銅鳍片搭配軸流風扇作為散熱裝置,測試均熱板於不同工作流體(水、甲醇及丙酮)和不同加熱面積(11mm×11mm、21mm×21mm及31mm×31mm)下之性能表現;接著以水作為工作流體、加熱面積21mm×21mm下,研究燒結銅網/銅粉複合式毛細結構之性能。為可重複使用,本實驗採用O環密封的均熱板,在抽真空後內部注入適當容量之除氣工作流體。結果顯示以水作為工作流體之均熱板性能最佳,因其具有較低的最低熱阻值及較大的熱傳極限,甲醇次之,而丙酮最差;不同加熱面積方面,可知加熱面積越大,其最低熱阻值越小,且熱傳極限越大。而在複合式毛細結構部份,測試不同網目之銅網填入銅粉後之性能,當加熱面積為21mm×21mm時,若採用單層銅網/銅粉複合式毛細結構,毛細厚度較小的銅網(200mesh)會因流阻變大使得熱傳極限降低;在多層銅網/銅粉之複合式毛細結構下,則因流體流過之等效截面積較大,於蒸發區添加銅粉可使毛細力增加,進而提升熱傳極限。


    摘要.....................................Ⅱ 目錄.....................................Ⅲ 圖表目錄.................................Ⅴ 第一章 緒論..............................1 1.1 研究背景.............................1 1.2 研究動機及目的.......................2 第二章 基本理論與文獻回顧................5 2.1 均熱板的工作原理.....................5 2.2 文獻回顧.............................7 2.2.1 均熱板之優點.......................7 2.2.2 薄膜蒸發特性.......................10 2.2.3 毛細結構對性能之影響...............13 2.2.4 複合式毛細結構.....................15 2.2.5 工作流體...........................17 2.2.6 加熱面積的影響.....................19 第三章 實驗方法..........................41 3.1 簡介.................................41 3.2 實驗配置與步驟.......................41 3.2.1 重複使用之均熱板結構...............42 3.2.2 實驗設備...........................44 3.2.3 實驗步驟...........................46 3.2.3 熱阻計算之整理.....................48 第四章 實驗結果與討論....................52 4.1 不同加熱面積.........................52 4.2 不同工作流體.........................54 4.3 複合式毛細結構.......................56 第五章 結論..............................67 參考文獻..................................69

    [1] S.-C. Wong, J.-D. Wu, W.-L. Han, Experiments on a novel vapor chamber, ITHERM 2008 Conference, Orlando, FL, USA, May 28-31, 2008.
    [2] S.-C. Wong, K.-C. Hsieh, J.-D. Wu, Wu.-L. Han, A novel vapor chamber and its performance, submitted to Int. J. Heat Mass Transfer 53 (2010) 2377-2384.
    [3] M. Mochizuki, Y. Saito, F. Kiyooka, T. Nguyen, The way we were and are going on cooling high power processors in the industries, The Seventh International Symposium in Transport Phenomena, Toyama, Japan, September 4-8, 2006.
    [4] K. Grubb, CFD modeling of a Therma-Base heat sink, 8th International FLOTHERM User Conference, 1999.
    [5] R. Boukhanouf, A. Haddad, M.T. North, C. Buffone, Experimental investigation of a flat plate heat pipe performance using IR thermal imaging, Applied Thermal Engineering 26 (2006) 2148–2156.
    [6] J. Wei, Challenges in cooling design of CPU packages for high-performance servers, Heat Transfer Engineering 29 (2008) 178–187.
    [7] G.S. Hwang, Y. Nam, E. Fleming, P. Dussinger, Y.S. Ju, M. Kaviany, Multi-artery heat pipe spreader: experiment, Int. J. Heat Mass Transfer 53 (2010) 2662-2669.
    [8] J.-H. Liou, C.-W. Chang, C. Chao, S.-C. Wong, Visualization and thermal resistance measurement for the sintered mesh-wick evaporator in operating flat-plate heat pipes, Int. J. Heat Mass Transfer 53 (2010) 1498-1506.
    [9] S.-C. Wong, J.-H. Liou, C.-W. Chang, Evaporation resistance measurement and visualization for sintered copper-powder evaporator in operating flat-plate heat pipes, submitted to Int. J. Heat Mass Transfer 53 (2010) 3792-3798.
    [10] M. Potash, P.C. Wayner, Evaporation from a two-dimensional extended meniscus, International Journal of Heat and Mass Transfer 15 (1972) 1851-1863.
    [11] C. Hohmann and P. Stephan, Microscale temperature measurement at an evaporating liquid meniscus, Experimental Thermal and Fluid Science 26 (2002) 157-162.
    [12] H. Wang, S. V. Garimella , J. Y. Murthy, characteristics of an evaporating thin film in a microchannel, Int. J. Heat Mass Transfer 50 (2007) 3933–3942.
    [13] R. Bertossi, V. Ayel, C. Romestant, Y. Bertin, Z. Lataoui, Modeling of transfer in the microregion in axially grooved heat pipes, comparison of fluid performances, Heat Pipe Sci. Tech. 1 (2010) 99-112.
    [14] W. Qu, T. Ma , J. Miao, J. Wang, Effects of radius and heat transfer on the profile of evaporating thin liquid film and meniscus in capillary tubes, Int. J. Heat Mass Transfer 45 (2002) 1879–1887.
    [15] S.-K. Wee, K. D. Kihm, K.P. Hallinan, Effects of the liquid polarity and the wall slip on the heat and mass transport characteristics of the micro-scale evaporating transition film, Int. J. Heat Mass Transfer 48 (2005) 265–278.
    [16] G.P. Peterson, Y. Wang, C. Li, Evaporation/boiling in thin capillary wicks (І)–wick thickness effect, ASME Journal of Heat Transfer 128 (2006) 1312-1319.
    [17] G.P. Peterson, C. Li, Evaporation boiling in thin capillary wicks (II)–effects of volumetric porosity and mesh size, ASME Journal of Heat Transfer 128 (2006) 1320-1328.
    [18] Y. Wang, G.P. Peterson, Investigation of a novel flat heat pipe, ASME Journal of Heat Transfer 127 (2005) 165-170.
    [19] M.A. Hanlon, H.B. Ma, Evaporation heat transfer in sintered porous media, ASME Journal of Heat Transfer 125 (2003) 644-652.
    [20] Y. Wang, K. Vafai, An experimental investigation of thermal performance of an asymmetrical flat plate heat pipe, Int. J. Heat Mass Transfer 43 (2000) 2657-2668.
    [21] M. Mochizuki, T. Nguyen, Y. Saito, Y. Horiuchi, K. Mashiko, T. Tanaphan, and Y. Kawahara, Latest vapor chamber technology for computer, The 8th International Heat Pipe Symposium, Japan, September, 2006.
    [22] H. Agata, F. Kiyooka, M. Mochizuki, K. Mashiko, Y. Saito, Y. Kawahara, T. Nguyen, T. Nguyen, Advance thermal solution using vapor chamber technology for cooling high performance desktop cpu in notebook computer, The 1st International Symposium on Micro & Nano Technology, Honolulu, Haiwaii, USA, March 4-17, 2004.
    [23] Y. Tang, D. Deng, L. Lu, M. Pan, Q Wang, Experimental investigation on capillary force of composite wick structure by IR thermal imaging camera, Experimental Thermal and Fluid Science 34 (2010) 190–196.
    [24] S.W. Chi, Heat Pipe Theory and Practice, McGraw-Hill, 1976.
    [25] J.S. Go, Quantitative thermal performance evaluation of a cost-effective vapor chamber heat sink containing a metal-etched microwick structure for advanced microprocessor cooling, Sensors and Actuators A 121 (2005) 549–556.
    [26] K. Take, Y. Furukawa, and S. Ushioda, Fundamental investigation of roll bond heat pipe as heat spreader plate for notebook computers, IEEE Transactions on Components and Packaging Technologies 23 (2000) 80-85.
    [27] S. Lips, F. Lefévre, J. Bonjour, Nucleate boiling in a flat grooved heat pipe, Int. J. Thermal Sci. 48 (2008) 1273-1278.
    [28] Y. Koito, H. Imura, M. Mochizuki, Y. Saito, S. Torii, Fundamental experiments and numerical analyses on heat transfer characteristics of a vapor chamber, JSME Int. J. 49 (2006) 1233-1240.
    [29] R. S. Prasher, A simplified conduction based modeling scheme for design sensitivity study of thermal solution utilizing heat pipe and vapor chamber technology, ASME Journal of Electronic Packaging 125 (2003) 378-385.
    [30] J.-Y. Chang, R.S. Prasher, S. Prstic, P. Cheng, H.B. Ma, Evaporative thermal performance of vapor chambers under nonuniform heating conditions, ASME Journal of Heat Transfer 130 (2008) 121501. (9 pp.)
    [31] 林宇中,平板熱管之可視化觀察與蒸發熱阻量測-不同工作流體與表面親水性之效應,國立清華大學碩士論文,2010

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE