研究生: |
林元煦 Lin, Yuan-Hsu |
---|---|
論文名稱: |
多用戶多載波毫米波系統基於子系統奇異值分解與區塊對角化之混合式波束成形設計 Hybrid Beamforming for Multi-User Multi-Carrier mmWave Systems under Sub-System SVD and Block Diagonalization |
指導教授: |
趙啟超
Chao, Chi-chao |
口試委員: |
蘇育德
Su, Yu-Ted 林茂昭 Lin, Mao-Chao 楊谷章 Yang, Guu-Chang |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 56 |
中文關鍵詞: | 毫米波 、混合式波束成形 、多輸入多輸出 |
外文關鍵詞: | Millimeter wave (mmWave), Hybrid beamforming, Multiple-input multiple-output (MIMO) |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在毫米波 (Millimeter Wave, mmWave) 多輸入多輸出 (multiple-input multiple-output, MIMO) 通訊系統中,傳統的全數位波束成形 (Full-Digital Beamforming) 需配置大量的射頻鏈 (Radio Frequency Chain, RF Chain),造成硬體複雜度過高和能量消耗過多等問題。因此結合了數位波束成形和類比波束成形的混和式波束成形 (Hybrid Beamforming) 架構被考慮應用在毫米波頻段通訊,來解決硬體限制問題。
本論文探討在IEEE 802.15.3c毫米波通道模型下,多用戶多載波系統的混合式波束成形設計,我們提出了非迭代式的混合式波束成形演算法,藉由子系統奇異值分解 (Sub-System Singular Value Decomposition, Sub-System SVD) 找到增益較強的等效通道,而在基頻 (Baseband) 使用區塊對角化 (Block Diagonalization, BD) 預編碼 (Precoding) 來消除使用者之間的干擾。透過模擬,我們比較不同演算法在直視性 (Line-of-Sight, LOS) 和非直視性 (Non-Line-of-Sight, NLOS) 之室內毫米波通道環境下的效能。
IEEE 802.15.3c通道模型描述了毫米波通道的時間及空間統計特性,藉由分析通道模型的統計特性,我們可以簡化設計方法,進一步降低運算複雜度,同時效能仍維持與原本演算法相同的水準。從模擬結果可知當系統參數改變,我們的演算法於高訊雜比 (Signal-to-Noise Ratios, SNRs) 下仍能有接近全數位區塊對角化方法的效能,且大幅降低所需的射頻鏈數量。
Hybrid beamforming that combines digital beamforming and analog beamforming is widely considered to be employed to reduce the necessary hardware in massive multiple-input multiple-output (MIMO) systems and overcome the strong path loss at millimeter wave (mmWave) frequencies. This study aims to develop hybrid beamforming design for downlink multi-user multi-carrier MIMO systems. On the basis of the sub-system singular value decomposition to enhance the signals for designing analog beamformers and digital combiners, and block diagonalization (BD) scheme to eliminate inter-user interference for designing
digital precoders, we propose a non-iterative hybrid beamforming algorithm.
The IEEE 802.15.3c channel model which captures the statistical properties of temporal and spatial domains of the indoor mmWave channel is adopted in this study. We also investigate channel statistical behavior to develop an algorithm that can achieve low computational complexity without obvious performance degradation. Simulation results indicated that the proposed algorithm with reasonable amount of transmit RF chains approaches the performance of the asymptotically optimal full-digital BD algorithm at high signal-to-noise ratios.
[1] R. C. Daniels and R. W. Heath, Jr., “60 GHz wireless communications: Emerging requirements and design recommendations,” IEEE Veh. Technol. Mag., vol. 2, no. 3, pp. 41–50, Sep. 2007.
[2] N. Guo, R. C. Qiu, S. S. Mo, and K. Takahashi, “60-GHz millimeter-wave radio: Principle, technology, and new results,” EURASIP J. Wireless Commun. and Networking, vol. 2007, no. 1, pp. 1–8, Jan. 2007.
[3] S.-K. Yong and C.-C. Chong, “An overview of multigigabit wireless through millimeter wave technology: Potentials and technical challenges,” EURASIP J. Wireless Commun. and Networking, vol. 2007, no. 1, pp. 1–10, Jan. 2007.
[4] L. Liang, W. Xu, and X. Dong, “Low-complexity hybrid precoding in massive multiuser MIMO systems,” IEEE Wireless Commun. Lett., vol. 3, no. 6, pp. 653–656, Dec. 2014.
[5] O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, Jr., “Spatially sparse precoding in millimeter wave MIMO systems,” IEEE Trans. Wireless Commun., vol. 13, no. 3, pp. 1499–1513, Mar. 2014.
[6] C. B. Peel, B. M. Hochwald, and A. L. Swindlehurst, “A vector-perturbation technique for near-capacity multiantenna multiuser communication–part I: Channel inversion and regularization,” IEEE Trans. Commun., vol. 53, no. 1, pp. 195–202, Jan. 2005.
[7] Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, “Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels,” IEEE Trans. Signal Process., vol. 52, no. 2, pp. 461–471, Feb. 2004.
[8] W. Ni and X. Dong, “Hybrid block diagonalization for massive multiuser MIMO systems,” IEEE Trans. Commun., vol. 64, no. 1, pp. 201–211, Jan. 2016.
[9] Y. Ahn, T. Kim, and C. Lee, “A beam steering based hybrid precoding for MU-MIMO mmWave systems,” IEEE Commun. Lett., vol. 21, no. 12, pp. 2726–2729, Dec. 2017.
[10] A. Alkhateeb, G. Leus, and R. W. Heath, Jr., “Limited feedback hybrid precoding for multi-user millimeter wave systems,” IEEE Trans. Wireless Commun., vol. 14, no. 11, pp. 6481–6494, Nov. 2015.
[11] S. Park, J. Park, A. Yazdan, and R. W. Heath, Jr., “Exploiting spatial channel covariance for hybrid precoding in massive MIMO systems,” IEEE Trans. Signal Process., vol. 65, no. 14, pp. 3818–3832, Jul. 2017.
[12] T.-H. Tsai and C.-C. Chao, “Hybrid beamforming for indoor mmWave multi-carrier systems under sub-system SVD,” in Proc. IEEE Int. Symp. Personal Indoor Mobile Radio Commun., Montreal, QC, Canada, Oct. 2017, pp. 1–6.
[13] M. Iwanow, N. Vucic, M. H. Castaneda, J. Luo, W. Xu, and W. Utschick, “Some aspects on hybrid wideband transceiver design for mmWave communication systems,” in Proc. Int. ITG Workshop Smart Antennas, Munich, Germany, Mar. 2016, pp. 1–8.
[14] A. Alkhateeb and R. W. Heath, Jr., “Frequency selective hybrid precoding for limited feedback millimeter wave systems,” IEEE Trans. Commun., vol. 64, no. 5, pp. 1801–1818, May 2016.
[15] J. P. Gonzalez-Coma, J. Rodriguez-Fernandez, N. Gonzalez-Prelcic, L. Castedo, and R. W. Heath, Jr., “Channel estimation and hybrid precoding for frequency selective multiuser mmWave MIMO systems,” IEEE J. Sel. Topics Signal Process., vol. 12, no. 2, pp. 353–367, May 2018.
[16] F. Sohrabi and W. Yu, “Hybrid analog and digital beamforming for mmWave OFDM large-scale antenna arrays,” IEEE J. Sel. Areas Commun., vol. 35, no. 7, pp. 1432–1443, Jul. 2017.
[17] X. Yu, J. Zhang, and K. B. Letaief, “Alternating minimization for hybrid precoding in multiuser OFDM mmWave systems,” in Proc. Asilomar Conf. Signals Syst. Comput., Pacific Grove, CA, Nov. 2016, pp. 281–285.
[18] Y. Zhu, Q. Zhang, and T. Yang, “Low-complexity hybrid precoding with dynamic beam assignment in mmWave OFDM systems,” IEEE Trans. Veh. Technol., vol. 67, no. 4, pp. 3685–3689, April 2018.
[19] S.-K. Yong, et al., “TG3c channel modeling sub-committee final report,” IEEE doc.:IEEE 802.15-07-0584-01-003c, Sep. 2010.
[20] S. Yoon, T. Jeon, and W. Lee, “Hybrid beam-forming and beam-switching for OFDM based wireless personal area networks,” IEEE J. Sel. Areas Commun., vol. 27, no. 8, pp. 1425–1432, Oct. 2009.
[21] W. Yu, W. Rhee, S. Boyd, and J. M. Cioffi, “Iterative water-filling for Gaussian vector multiple-access channels,” IEEE Trans. Inf. Theory, vol. 50, no. 1, pp. 145–152, Jan 2004.
[22] Y.-H. Hsiao, “Channel correlation analysis for ultra-wideband OFDM systems,” Master’s thesis, Nat. Tsing Hua Univ., Hsinchu, Taiwan, R.O.C., 2017.
[23] “IEEE standard for information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific require- ments. Part 15.3: Wireless medium access control (MAC) and physical layer (PHY) specifications for high rate wireless personal area networks (WPANs) amendment 2: Millimeter-wave-based alternative physical layer extension,” IEEE Std 802.15.3c-2009 (Amendment to IEEE Std 802.15.3-2003), pp. c1–187, Oct. 2009.