研究生: |
游佩潔 Yu, Pei-Chieh |
---|---|
論文名稱: |
以MCNPX計算Henschke裝療管於近接治療子宮頸癌病患的劑量 MCNPX dose calculation for cervical cancer patients using brachytherapy with a Henschke applicator |
指導教授: |
董傳中
Tung, Chuan-Jong 趙自強 Chao, Tsi-Chian |
口試委員: |
李宗其
Lee, Chung-Chi 莊克士 Chuang, Keh-Shih 吳錦榕 Wu, Ching-Jung |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 101 |
中文關鍵詞: | 近接治療 、Henschke裝療管 、蒙地卡羅 、自顯影片 |
外文關鍵詞: | Brachytherapy, Henschke Applicator, Monte Carlo, EBT3 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,Henschke裝療管已被廣泛用於台灣婦科癌症的近接放射治療。然而,商業的近接放射治療計劃系統沒有正確地評估由Henschke裝療管引起的劑量擾動。此劑量擾動,在近接放射治療中逐漸受到關注。本研究利用Monte Carlo N-Particle Transport Code eXtended ( MCNPX ) 蒙地卡羅程式,來評估有Henschke裝療管的病人於近接治療的劑量分佈。本研究包含三種模擬狀況,第一種狀況模擬單射源劑量結果與AAPM TG-43報告中的劑量參數相比較,用以驗證模擬方法的正確性。第二種狀況模擬包含Henschke裝療管的多射源停留狀況,並將此模擬結果與近接治療計畫計算結果及自顯影片測量結果相比,以評估金屬造成之劑量差異。第三種模擬狀況為模擬包含病人電腦斷層假體之Henschke裝療管的多射源停留狀況,此狀況將與近接治療計畫計算結果及有裝療管無病人電腦斷層假體的結果相比,以評估組織不均質之劑量差異。第一種狀況中執行空氣克馬強度,徑向劑量函數和異向函數的模擬,模擬結果與TG-43定義的劑量參數相比對,其結果是一致的。而多個射源且包含Henschke裝療管劑量與治療計畫相比,治療計畫的劑量高估80%,此差距亦存在於治療計畫結果與測量結果的比對中。若比較病人電腦斷層假體和均質電腦斷層假體造成的劑量差異,則約為16.7-26%。因此,組織不均質的劑量影響小於金屬Henschke裝療管的造成之劑量影響。在均質水假體不含Henschke裝療管的條件下,治療計畫可有效評估劑量分佈。但若在均質水假體含Henschke裝療管的條件下,治療計畫劑量結果將高估80%。模擬的結果證明治療計劃系統無法評估金屬不均質的劑量分布,但來自於人體組織的不均質的劑量影響小於1%。因此在使用新的裝療管之前,必須評估該裝療管劑量分佈。
In recent years the Henschke applicator has been widely used for gynecologic patients treated by brachytherapy in Taiwan. However, the commercial brachytherapy planning system did not properly evaluate the dose perturbation caused by the Henschke applicator. Dose perturbation caused by the Henschke applicator is a major concern for the brachytherapy planning system (BPS). We use Monte Carlo N-Particle Transport Code eXtended ( MCNPX ) to evaluate the dose distribution of patient computed tomography (CT) images employing the Henschke applicator for intracavitary brachytherapy. This study included three scenarios. First, this Monte Carlo simulation has been validated by single source dose results comparing the dose parameters to AAPM TG-43 report. Second, to investigate dose impact owing to neglect of the metal shielding effect, Monte Carlo simulation, Brachytherapy Planning System (BPS) calculations, and film measurements have been performed for dose assessment in a water phantom. Third, the CT images are applied to MCNPX for dose calculation. In addition to this phantom study, the patient CT images are also applied to MCNPX for inhomogeneous assessments. The air kerma strength, radial dose function and anisotropic function were shown good agreement with TG43 dose parameters. The dose distribution of multiple sources without Henschke applicator was performed by isodose curves. The comparison among simulation, BPS results, and film measurements were also in good agreement. But, isodose distributions with Henschke applicator by the MC simulation showed significant deviation 80% from those by the BPS. Furthermore, the comparison of dose distribution between the patient CT and phantom CT, the discrepancy of dose was 16.7-26%. This discrepancy included that the applicator placement was not exactly the same with simulation condition. But the effect of tissue inhomogeneous is still smaller than the shielding effect of Henschke applicator. In the condition of homogeneous water phantom without applying Henschke applicator, a good agreement was found among MC, BPS, and film measurement. Comparisons of MC and BPS with applying Henschke applicator show significant differences, as reported previously in the literature. The maximum overestimation is 80% in treatment area. This results prove that BPS can not calculate the metal attenuation correctly. Further, the dose discrepancy derived from the tissue heterogeneities was less than 1%. The MC results demonstrate the inability of BPS to account for heterogeneities. Thus, dose distribution of applicator must be evaluated before using new applicator.
1. F. Ballester, D. Granero, J. Pérez-Calatayud, C. S. Melhus, and M. J. Rivard, “Evaluation of high-energy brachytherapy source electronic disequilibrium and dose from emitted electrons,” Med. Phys. 36, 4250-4256 (2009).
2. S. Bensaleh, and E. Bezak, “ Investigation of source position uncertainties & balloon deformation in MammoSite brachytherapy on treatment effectiveness.” Australas. Phys. Eng. Sci. Med. 3, 35-44(2010).
3. R. M. Chandola, S. Tiwari, M. K. Kowar, and V. Choudhary, “Effect of inhomogeneities and source position on dose distribution of nucletron high dose rate Ir–192 brachytherapy source by Monte Carlo simulation,” J. Cancer Res. Ther. 6, 54-57 (2010).
4. H. C. Chen, W. L. Chen, K. H. Chang, “Monte Carlo simulation of an 192Ir brachytherapy source in bone and lung,” Therapeut. Radiol Oncol. 8, 43-53(2001).
5. M. J. Cazeca, D. C. Medich, and J. J. Munro, “ Effects of breast-air and breast-lung interfaces on the dose rate at the planning target volume of a MammoSite catheter for Yb-169 and Ir-192 HDR source,” Med. Phys. 37, 4038-4045 (2010).
6. X. Yan, E. Poon, B. Reniers, T. Vuong, and F. Verhaegen, “ Comparison of dose calculation algorithms for colorectal cancer brachytherapy treatment with a shielded applicator,” Med. Phys. 35,4824-4830(2008).
7. E. Poon, and F. Verhaegen, “ A CT-based analytical dose calculation method for HDR 192Ir brachytherapy,” Med. Phys. 36, 3982-3994(2009).
8. M. J. Price, J. L. Horton, K. A. Gifford, P. J. Eifel, A. Jhingran, A. A. Lawyer, P. A. Berner, and F. Mourtada, “Dosimetric evaluation of the Fletcher- Williamson ovoid for pulsed-dose-rate brachytherapy: a Monte Carlo study,” Phys. Med. Biol. 50, 5075-5087(2005).
9. L. J. Slate, H. R. Elson, M. A. Lamba, W. M. Kassing, M. Soldano, and W. L. Barrett, “ A Monte Carlo brachytherapy study for dose distribution prediction in an inhomogeneous medium,” Med. Dosim.29, 271-278(2004).
10. R. Nath, L. L. Anderson, G. Luxton, K. A. Weaver, J. F. Williamson, and A. S. Meigooni, ‘‘Dosimetry of interstitial brachytherapy sources: Recommendations of the AAPM Radiation Therapy Committee Task Group No. 43,’’ Med. Phys. 22, 209–234(1995).
11.G. Anagnostopoulos, D. Baltas, and E. Pantelis, P. Papaqiannis and L. Sakelliou, “ The effect of patient inhomogeneities in oesophageal 192Ir HDR brachytherapy: A Monte Carlo and analytical dosimetry study,” Phys. Med. Biol. 49, 2675– 2685(2004).
12. K. A. Gifford , J. L. Horton, E. F. Jackson, T. R. 3rd Steger, M.P. Heard, F. Mourtada, A. A. Lawyer, and G. S. Ibbott, “ Comparison of Monte Carlo calculations around a Fletcher Suit Delclos ovoid with radiochromic film and normoxic polymer gel dosimetry,” Med. Phys. 32, 2288-2294(2005).
13. E. Poon, J. F. Williamson, T. Vuong, and F. Verhaegen, “Patient-Specific Monte Carlo Dose Calculations for High-Dose-Rate Endorectal Brachytherapy With Shielded Intracavitary Applicator,” Int. J. Radiat. Oncol. Biol. Phys. 72,1259-1266(2008).
14. L. Petrokokkin, K. Zourari, E. Pantelis, A. Moutsatsos, P. Karaiskos, L. Sakelliou, I. Seimenis, E Georgious, and P. Papagiannis, “Dosimetric accuracy of a deterministic radiation transport based 192Ir brachytherapy treatment planning system. Part II: Monte Carlo and experimental verification of a multiple source dwell position plan employing a shielded applicator,” Med. Phys. 38, 1981-1992(2011).
15.R. Nath, L. Anderson, D. Jones, C. Ling, R. Loevinger, J. Williamson, and W. Hanson, ‘‘Specification of brachytherapy source strength: A report by Task Group 32 of the American Association of Physicists in Medicine,’’ AAPM Report No. 21 (American Institute of Physics, New York, 1987).
16.ICRU 38 Dose and Volume Specification for Reporting Intracavitary Therapy in Gynecology, International Commission on Radiation Units and Measurements (ICRU 38, Bethesda, MD, 1985).
17.ICRU 60 Fundamental Quantities and Units for Ionizing Radiation, International Commission on Radiation Units and Measurements (ICRU 60, Bethesda, MD, 1998).
18. X-5 Monte Carlo Team, MCNP-A General Monte Carlo N-Particle Transport Code, Version 5 Los Alamos National Laboratory, Los Alamos, NM, 2003.
19. L. Buermann, H.-M.Kramer, H Schrader, and H. J. Selbach, “Activity determination of 192Ir solid sources by ionization chamber measurements using calculated corrections for self-absorption,” Nucl. Instr. Meth. A 339, 369-376(1994).
20. J. F. Williamson and Z. Li, “Monte Carlo aided dosimetry of the microselectron pulsed and high dose-rate 192Ir source,” Med. Phys. 22, 809-819(1995).
21. 李雲景, “以MCNPX2.6.0模擬質子在均質假體與人體CT假體中之劑量分布”, 長庚大學碩士論文, 2011
22. W. Schneider, T. Bortfeld and W. Schlegel, “Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distribution,” Phys. Med. Biol. 45, 459-478(2000).
23. J. Borg and D. W. Rogers, “Spectra and air-kerma atrength for encapsulated 192Ir sources,” Med. Phys. 26, 2441-2444(1999)
24. P. C. Yu, T. C. Chao, C. C. Lee, C. J. Wu, and C. J. Tung, “ A Monte Carlo dosimetry study using Henschke applicator for cervical brachytherapy,” Nucl. Instr. Meth. A,” 619, 411-414(2010).
25.吳杰, “ 以影像為基礎的電腦斷層金屬假影矯正法(金屬假影矯正法)”, 中華放射線技術學雜誌, 30, 79-86, (2006)