簡易檢索 / 詳目顯示

研究生: 金妮葳
Jin, Ni-Wei
論文名稱: 設計一段流暢對話:探討使用者對於智能投資平台之態度
Design a fluent conversation with robo-advisor: explore user attitude with platform
指導教授: 嚴秀茹
Yen, Hsiu-Ju
口試委員: 林福仁
Lin, Fu-Ren
許裴舫
Hsu, Pei-Fang
學位類別: 碩士
Master
系所名稱: 科技管理學院 - 服務科學研究所
Institute of Service Science
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 61
中文關鍵詞: 智能投資時間解釋水平目標框架態度
外文關鍵詞: Robo advisor, temporal construal level, goal-framing, attitude
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 智能投資工具發展自2008年金融危機,近年來在台灣受到產業及學術界的關注。但目前採用率不如預期,即便它擁有不受時間限制、低成本和自動化的優勢。因此,本研究彙整過去相關研究,並運用質化及量化兩種方法探討影響使用者對智能投資平台的態度的因素,最後總結未來平台設計要點及發展方向。

    本文透過深度訪談歸納出台灣的智能投資平台顧客旅程及重要的服務接觸點,並提出旅程三階段之設計機會點。再引用解釋水平及目標框架理論設計 2(時間遠、近) X 2(損益、獲益型框架)的情境式實驗問卷,探討兩因素間交互作用如何影響對於平台之態度,並檢視流暢性經驗的中介效果。問卷透過網路隨機發放,有效樣本共計127份,研究發現時間解釋水平以及流暢的人物描繪(profiling)階段經驗對態度具顯著影響。顯示影響智能投資平台的態度的主要因素除了體驗過程中的流暢經驗外,也應考量使用者本身是在較近或較遠的未來將進行投資的差異。

    綜合上述發現,給予服務設計層面的相關解釋如何與初淺投資經驗使用者進行流暢溝通,引起對平台的較佳的態度,進而延續使用,還有未來實務上的建議、研究可發展方向及限制,本研究為應用於散戶投資者的溝通機制上提供了啟示,並補充台灣在此領域中的學術缺口。


    Robo advisor has developed since the 2008 financial crisis and has attracted the industry and academia in Taiwan recently. However, current adoption rate is not as expected, even if it owns advantages of real-time service, low fees and algorithm computation. The paper firstly studied previous research, and discussed the factors that affected the attitude of robo advisor platform by both qualitative and quantitative methods. To conclude, five design principles of platform and future development were proposed.
    This article provided the customer journey map of Taiwan's robo advisor platforms through in-depth interviews, and pointed out five design opportunities. Plus, a 2 (temporal construal level: high versus low) X 2 (goal framing: gain versus loss) scenario experimental design was conducted to explore how the interaction of two factors affected the attitude of platform, and tested fluency experience as a mediator. The questionnaire was randomly distributed, and a total of 127 effective samples collected. The study found that fluent experience at profiling stage had a direct effect on the attitude of platform, the temporal construal level also presented the same effect. It showed that not only fluent experience was important towards attitude, but also user's own temporal mindset of investment.
    The paper aimed to design a fluent message to attract and change preliminary investment experience users’ attitude, and in the long run would continue to use robo advisor platform. The managerial application, research limits and future direction were discussed and the research contributed to a richer view of Taiwan’s academic gap in wealth management field.

    摘要 1 Abstract 2 表目錄 5 圖目錄 5 第一章、 緒論 6 1-1 研究背景 6 1-2 研究目的與問題 7 資訊科技 7 第二章、 文獻探討 9 2-1 國內外探索性研究:智能投資平台 9 2-2 對智能投資平台之態度 13 第三章、質化研究-深度訪談 15 3-1 研究架構 15 3-1-1 顧客旅程地圖 15 3-1-2 智能投資平台服務流程 17 3-2 研究步驟 18 3-3 研究對象選取 19 3-3-1 研究平台選取 19 3-3-2 研究對象與樣本數 20 3-4 研究結果 20 3-4-1 訪談內容整理 20 3-4-2 小結:五大設計機會點 27 第四章、量化研究-情境式實驗問卷 28 4-1 文獻回顧 28 4-1-1 時間解釋水平理論 28 4-1-2 目標框架理論 30 4-1-3 訊息適配性與流暢性經驗 31 4-1-4 時間解釋水平與目標描述框架的交互效應 32 4-1-5 流暢性經驗之中介效果 34 4-2 研究方法 36 4-2-1 程序與設計 36 4-2-2 研究變數操作型定義及衡量 38 4-2-3 前測 40 4-3 研究結果 41 4-3-1 敘述性統計 41 4-3-2 操弄檢測 43 4-3-3 信度檢測 44 4-3-4 假設檢定 44 4-3 討論 46 4-4-1 時間距離及目標描述框架之交互作用對於態度的影響 46 4-4-2 流暢性經驗之中介效果 48 第五章、 結論與建議 49 5-1 智能投資平台態度的影響因素 49 5-2 智能投資平台對話設計:時間解釋水平、目標描述框架與流暢性經驗 50 5-3 管理意涵 51 5-4 研究限制與未來發展 52 參考文獻 54 附錄 60 附錄一、 情境故事(時間距離操弄) 60 附錄二、 情境故事(目標描述框架操弄) 61

    中文文獻
    SmartM 新網路科技 (2019)。AI 智能理財機器人翻倍成長,各大金融機構搶食商機,取自:https://www.smartm.com.tw/article/35383537cea3
    吳金山、鄭菲菲、林信惠 (2005)。框架效應對電子商務採購行為意圖影響之研究。資訊管理學報,12(3),131-157。
    周軒逸、練乃華 (2010)。旅遊廣告圖文比例的廣告效果研究: 時間和空間距離干擾。戶外遊憩研究,23(1),27-52。
    林家五、彭炎祺、張書豪、胡宛仙 (2010)。框架與觸發效應在衝突協商中對協商者行為意圖與態度的影響。人力資源管理學報,10(3),25-50。
    馬睿平、林育如、林榮泰 (2014)。雲端技術輔助慶典活動服務設計的實踐: 以北投公園百年紀念系列活動為例。設計學報,19(2),29-52。
    游舒晴 (2019)。「影響消費者在投資行為上使用金融科技的因素」,碩士論文。國立政治大學企業管理研究所,臺北市。
    數位時代 (2019)。業界首創 永豐ibrAin以100% ETF極大化智能理財績效,取自:https://www.bnext.com.tw/article/54716/bsp-ibrain-01
    數位時代 (2020)。上線兩年資產規模僅7億元...兩大原因看台灣機器人理財困境,取自:https://www.bnext.com.tw/article/56601/robo-advisor-myth
    蘇恒賢、詹永寬(2019)。投資顧問機器人及監管科技運用在財富管理業務的分析與探討。台灣管理學刊,19(1),1-16。
    顏永森 (2008)。網路自助服務的使用者滿意度之實證研究。資訊管理學報,15(4),151-175。
    盧鴻毅、侯心雅、陳姿蓓、林玫均與李政忠 (2009)。網路使用動機, 網路資訊態度與決策參考之間的關聯性。中華傳播學刊,(16),255-285.
    英文文獻
    Adam, M., Toutaoui, J., Pfeuffer, N., & Hinz, O. (2019). Investment Decision with Robo-Advisors: The Role of Anthropomorphism and Personalized Anchors in Recommendations. In Proceedings of the 27th European Conference on Information Systems (ECIS), Stockholm & Uppsala, Sweden.
    Aggarwal, P., & McGill, A. L. (2012). When Brands Seem Human, Do Humans Act Like Brands? Automatic Behavioral Priming Effects of Brand Anthropomorphism. Journal of Consumer Research, 39(2), 307–323. https://doi.org/10.1086/662614.
    Allard, T., & Griffin, D. (2017). Comparative price and the design of effective product communications. Journal of Marketing, 81(5), 16-29.
    Bargh, J. A., Gollwitzer, P. M., Lee-Chai, A., Barndollar, K., & Trötschel, R. (2001). The automated will: nonconscious activation and pursuit of behavioral goals. Journal of personality and social psychology, 81(6), 1014.
    Baumeister, R. F., Vohs, K. D., & Oettingen, G. (2016). Pragmatic Prospection: How and Why People Think about the Future. Review of General Psychology, 20(1), 3-16. https://doi.org/10.1037/gpr0000060
    Bayuk, J. (2015). Should I plan? Planning effects on perceived effort and motivation in goal pursuit. Journal of Consumer Behaviour, 14(5), 344–352. https://doi.org/10.1002/cb.1525.
    Beltramini, E. (2018). Human vulnerability and robo-advisory: An application of Coeckelbergh’s vulnerability to the machine-human interface. Baltic Journal of Management, 13(2), 250-263.
    Buhrau, D., & Sujan, M. (2015). Temporal mindsets and self-regulation: The motivation and implementation of self-regulatory behaviors. Journal of Consumer Psychology, 25(2), 231-244.
    Deloitte. (2019). Robots are here: The rise of robo-advisers in Asia Pacific. Retrieved from https://www2.deloitte.com/content/dam/Deloitte/sg/Documents/financial-services/sea-fsi-robo-advisers-asia-pacific.pdf
    Dolata, M., & Schwabe, G. (2016). More interactivity with IT support in advisory service encounters?. Mensch und Computer 2016 -Tagungsband. Aachen: Gesellschaft für Informatik eV. DOI: 10.18420/muc2016-mci-0077.
    Ernst & Young Global Limited. (2016). Goal-based planning a personalized service for strengthening client relationship. Retrieved from https://goalsbased.com.au/assets/Resources/EY-WM-goals.pdf
    Etemad-Sajadi, R. (2016). The impact of online real-time interactivity on patronage intention: The use of avatars. Computers in human behavior, 61, 227-232.
    Freund, A. M., & Hennecke, M. (2015). On means and ends: The role of goal focus in successful goal pursuit. Current Directions in Psychological Science, 24(2), 149-153.
    Fulk, M., Grable, J. E., Watkins, K., & Kruger, M. (2018). Who uses robo-advisory services, and who does not?. Financial Services Review, 27(2), 173-188.
    Glaser, F., Iliewa, Z., Jung, D., & Weber, M. (2018). Towards Designing Robo-advisors for Unexperienced Investors with Experience Sampling of Time-Series Data. In Information Systems and Neuroscience (pp. 133–138). Springer International Publishing. https://doi.org/10.1007/978-3-030-01087-4_16
    Estelami, H. (2014). An ethnographic study of consumer financial sophistication. Journal of Consumer Behaviour, 13(5), 328–341. doi:10.1002/cb.1472
    Gomber, P., Koch, J.-A., & Siering, M. (2017). Digital Finance and FinTech: current research and future research directions. Journal of Business Economics, 87(5), 537–580. https://doi.org/10.1007/s11573-017-0852-x
    Hayes, A. F. (2013), Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-based Approach. New York:The Guilford Press.
    Hershfield, H. E., John, E. M., & Reiff, J. S. (2018). Using vividness interventions to improve financial decision making. Policy Insights from the Behavioral and Brain Sciences, 5(2), 209-215.
    Hershfield, H. E. (2011). Future self-continuity: how conceptions of the future self transform intertemporal choice. Annals of the New York Academy of Sciences, 1235(1), 30-43. https://doi.org/10.1111/j.1749-6632.2011.06201.x
    Hillenbrand, C., Saraeva, A., Money, K., & Brooks, C. (2019). To invest or not to invest?: the roles of product information, attitudes towards finance and life variables in retail investor propensity to engage with financial products. British Journal of Management, 1-21. DOI: 10.1111/1467-8551.12348
    Higgins, E. T. (2000). Making a good decision: Value from fit. American Psychologist, 55, 1217–1233.
    Hillenbrand, C., Saraeva, A., Money, K., & Brooks, C. (2019). To invest or not to invest?: the roles of product information, attitudes towards finance and life variables in retail investor propensity to engage with financial products. British Journal of Management, 00, 1-21. https://doi.org/10.1111/1467-8551.12348
    Jung, D., Dorner, V., Weinhardt, C. & Pusmaz, H. (2018). Designing a robo-advisor for risk-averse, low-budget consumers. Electron Markets, 28(3), 367-380. https://doi.org/10.1007/s12525-017-0279-9.
    Jung, D., Erdfelder, E. & Glaser, F.. (2019a, November 29). Nudged to Win: Designing Robo-Advisory to Overcome Decision Inertia. Paper presented at the ECIS 2018 Proceedings at AIS Electronic Library (AISeL). Research-in-Progress Papers. 19. https://aisel.aisnet.org/ecis2018_rip/19
    Jung, D., Glaser, F., & Köpplin, W. (2019b). Robo-advisory: Opportunities and risks for the future of financial advisory. In Advances in Consulting Research (pp. 405-427). Springer, Cham.
    Karataş, M., & Gürhan‐Canli, Z. (2020). When Consumers Prefer Bundles with Noncomplementary Items to Bundles with Complementary Items: The Role of Mindset Abstraction. Journal of Consumer Psychology, 30(1), 24-39.
    King, B. (2018). Bank 4.0: Banking everywhere, never at a bank. Asia: Marshall Cavendish International.
    Labroo, A. A., & Lee, A. Y. (2006). Between two brands: A goal fluency account of brand evaluation. Journal of Marketing Research, 43(3), 374-385.
    Lee, A. Y., & Aaker, J. L. (2004). Bringing the frame into focus: the influence of regulatory fit on processing fluency and persuasion. Journal of personality and social psychology, 86(2), 205.
    Lee, A. Y., Keller, P. A., & Sternthal, B. (2009). Value from Regulatory Construal Fit: The Persuasive Impact of Fit between Consumer Goals and Message Concreteness. Journal of Consumer Research, 36(5), 735–747.
    Lee, A. Y., Keller, P. A., & Sternthal, B. (2010). Value from regulatory construal fit: The persuasive impact of fit between consumer goals and message concreteness. Journal of Consumer Research, 36(5), 735-747
    Lemon, K. N., & Verhoef, P. C. (2016). Understanding customer experience throughout the customer journey. Journal of marketing, 80(6), 69-96.
    Levin, I. P., & Gaeth, G. J. (1988). Framing of attribute information before and after consuming
      the product. Journal of Consumer Research, 15, 374–378.
    Levin, I. P., Gaeth, G. J., Schreiber, J., & Lauriola, M. (2002). A New Look at Framing Effects: Distribution of Effect Sizes, Individual Differences, and Independence of Types of Effects. Organizational Behavior and Human Decision Processes, 88(1), 411–429. doi:10.1006/obhd.2001.2983
    Liberman, N., & Trope, Y. (1998). The role of feasibility and desirability considerations in near and distant future decisions: A test of temporal construal theory. Journal of personality and social psychology, 75(1), 5.
    Lindenberg, S., & Steg, L. (2007). Normative, gain and hedonic goal frames guiding environmental behavior. Journal of Social issues, 63(1), 117-137.
    Kim, H., Rao, A. R., & Lee, A. Y. (2009). It's time to vote: The effect of matching message orientation and temporal frame on political persuasion. Journal of Consumer Research, 35(6), 877-889.
    Monroe, A. E., Ainsworth, S. E., Vohs, K. D., & Baumeister, R. F. (2017). Fearing the Future? Future-Oriented Thought Produces Aversion to Risky Investments, Trust, and Immorality. Social Cognition, 35(1), 66–78. https://doi.org/10.1521/soco.2017.35.1.66
    Novemsky, N., Dhar, R., Schwarz, N., & Simonson, I. (2007). Preference fluency in choice. Journal of marketing research, 44(3), 347-356.
    Nussbaumer, P., Matter, I., & Schwabe, G. (2012). “Enforced” vs. “casual” transparency – Findings from IT-supported financial advisory encounters. ACM Transactions on Management Information Systems, 3(2), Article 11. http://doi.acm.org/10.1145/2229156.2229161.
    Okder, H. (2010). The illusion of the framing effect in risky decision making. Journal of Behavioral Decision Making, 25(1), 63–73. doi:10.1002/bdm.715
    Parasuraman, A., Zeithaml, V. A., & Berry, L. L. (1985). A conceptual model of service quality and its implications for future research. Journal of Marketing, 49(4), 41-50.
    Park, J., & Hedgcock, W. M. (2016). Thinking concretely or abstractly: The influence of fit between goal progress and goal construal on subsequent self-regulation. Journal of Consumer Psychology, 26(3), 395-409.
    Rudzinska-Wojciechowska, J. (2017). If you want to save, focus on the forest rather than on trees. The effects of shifts in levels of construal on saving decisions. PloS ONE, 12(5), e0178283.
    Salo, A. (2017). Robo advisor, your reliable partner? Building a trustworthy digital investment management service [Unpublished Master's thesis]. University of Tampere.
    Schwarz, Norbert (2004), Metacognitive Experiences in Consumer Judgment and Decision Making, Journal of Consumer Psychology, 14 (4), 332–48.
    Sekścińska, K., Rudzinska-Wojciechowska, J., & Maison, D. (2018). Risky financial choices in a gain and loss decision frame–the role of chronic and situationally induced time perspectives. Current Psychology, 1-11.
    Sironi, P. (2016). FinTech innovation: From robo-advisors to goal based investing and gamification. Wiley. https://doi.org/10.1002/9781119227205.
    Solomon, M. R., Surprenant, C., Czepiel, J. A., & Gutman, E. G. (1985). A role theory perspective on dyadic interactions: the service encounter. Journal of marketing, 49(1), 99-111.
    Statista Digital Market Outlook. (2019). PERSONAL FINANCE REPORT 2019. Retrieved from https://www.statista.com/outlook/337/100/robo-advisors/worldwide.
    Taiwan Security and Future Institute (SFI). (2018, Jan). Research of Taiwan Robo Advisory Development. Retrieved Feb 2020, 13, from https://webline.sfi.org.tw/download/resh_ftp/AMEDFund/%E6%88%91%E5%9C%8B%E7%99%BC%E5%B1%95%E6%A9%9F%E5%99%A8%E4%BA%BA%E7%90%86%E8%B2%A1%E9%A1%A7%E5%95%8F%E4%B9%8B%E7%A0%94%E7%A9%B6.pdf.
    Theresa W. Carey. (2019, September 24). Robo-Advisors 2019: Still Waiting for the Revolution. Retrieved from https://www.investopedia.com/robo-advisors-2019-where-have-all-the-assets-gone-4767826.
    Trope, Y., & Liberman, N. (2003). Temporal construal. Psychological Review, 110(3), 403 – 421.
    Trope, Y., & Liberman, N. (2010). Construal-level theory of psychological distance. Psychological review, 117(2), 440.
    Tsai, C. I., & McGill, A. L. (2011). No pain, no gain? How fluency and construal level affect consumer confidence. Journal of Consumer Research, 37(5), 807-821.
    Vallacher, R. R., & Wegner, D. M. (1987). What do people think they're doing? Action identification and human behavior. Psychological review, 94(1), 3.
    White, K., MacDonnell, R., & Dahl, D. W. (2011). It's the mind-set that matters: The role of construal level and message framing in influencing consumer efficacy and conservation behaviors. Journal of Marketing Research, 48(3), 472-485.
    Yousefi, N. & Nasiripour, A. (2015). A Proposed Model of E-Trust for Electronic Banking. Management Science Letters, 5(11), 1029–1040.

    QR CODE