研究生: |
陳品劦 Chen, Pin-Hsieh |
---|---|
論文名稱: |
含機能性脂質之奈米乳液對於樹突狀細胞的免疫調節作用 Immunomodulatory Effect of Nanoemulsions Based on Functional Hydrocarbons on Dendritic Cells |
指導教授: |
黃明熙
Huang, Ming-Hsi 吳夙欽 Wu, Suh-Chin |
口試委員: |
林永昇
Lin, Yung-Sheng 黃崇雄 Huang, Chung-Hsiung |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 88 |
中文關鍵詞: | 奈米乳液 、機能性脂質 、樹突狀細胞 、免疫調節 、ω-3脂肪酸 、ω-6脂肪酸 |
外文關鍵詞: | nanoemulsion, hydrocarbon, functional hydrocarbon, ω-3 fatty acid, ω-6 fatty acid, dendritic cell |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
許多研究指出機能性脂質(functional hydrocarbons)之攝取與人類健康的相關性,而一部分的機能性脂質也對人體有調節免疫系統之功效。其中,二十碳五烯酸(eicosapentaenoic acid, EPA)屬於ω-3脂肪酸,能從魚油當中攝取;花生四烯酸(arachidonic acid, AA)屬於ω-6脂肪酸,富含於肉類與植物油中。角鯊烯(squalene)、角鯊烷(squalane)與姥鮫烷(pristane)為不溶於水的脂質,能夠從魚肝油取得。研究指出,從飲食中獲取適量的ω-3和ω-6脂肪酸,能夠幫助免疫系統的調節,其攝取比例對於免疫反應具有平衡作用;此外,攝取過多短鏈姥鮫烷脂質將導致體內嚴重的自體免疫反應。有必要進一步釐清機能性脂質當中,ω-3和ω-6脂肪酸與脂質碳鏈長度對於免疫反應所造成的影響。
樹突狀細胞(dendritic cells, DCs)於身體的先天性與後天性免疫中扮演重要的角色,我們規劃利用C57BL/6小鼠的骨髓樹突狀細胞(bone marrow-derived dendritic cells, BMDCs)模型來評估機能性脂質對於免疫調節的影響。然而,因為上述機能性脂質幾乎不溶於水的緣故,我們透過乳化技術將其製備成奈米乳液,藉此能讓不溶於水的物質均勻分散於水中、增加與細胞的接觸機會。粒徑分析顯示,以音波振動處理搭配擠壓程序,能夠將乳液粒徑調整至奈米等級粒子(100 nm)。我們將這些含有機能性脂質之奈米乳液刺激樹突狀細胞,於結果中並未造成顯著的影響。接著我們以脂多醣內毒素(lipopolysaccharide, LPS)來活化樹突狀細胞,藉此評估這些機能性脂質對樹突狀細胞活化的影響。結果中發現,二十碳五烯酸降低了功能性分子標誌(functional marker)的表現與發炎細胞激素(proinflammatory cytokine)的生產。同時也注意到花生四烯酸在樹突狀細胞活化方面卻有相反的影響,例如花生四烯酸提升了其CD86的表現。角鯊烯與角鯊烷雖然擁有相同的碳鏈長度但是因雙鍵的飽和度不同,透過兩者比較得知其飽和度差異並不會改變對樹突狀細胞的影響。角鯊烷與姥鮫烷為飽和脂肪,但姥鮫烷的碳鏈較短,結果也指出碳鏈長短差異對樹突狀細胞沒有明顯的改變。接下來,我們透過卵清蛋白(ovalbumin, OVA)作為抗原,以探討樹突狀細胞同時攝取抗原與機能性脂質的影響。結果顯示,二十碳五烯酸不僅降低了功能性分子標誌的表現,也減少了樹突狀細胞的數量。相反地,花生四烯酸提升了其CD86與MHCII的表現並顯著的增加樹突狀細胞的數量。除此之外,於角鯊烯、角鯊烷與姥鮫烷的結果中顯示,飽和度差異與碳鏈長短對同時攝取抗原的樹突狀細胞沒有明顯的影響。
我們進一步驗證二十碳五烯酸與花生四烯酸對於體內樹突狀細胞的影響。我們將卵清蛋白搭配二十碳五烯酸和花生四烯酸以肌肉注射方式接種於C57BL/6小鼠體內。結果顯示樹突狀細胞會被誘發並聚集於引流淋巴結(draining lymph node, dLN)當中。值得注意的是,二十碳五烯酸會抑制樹突狀細胞的匯聚,而花生四烯酸卻能促進其聚集到引流淋巴結。此體內實驗分析可呼應了前面骨髓樹突狀細胞實驗中兩者對樹突狀細胞相反的影響,也能更了解二十碳五烯酸與花生四烯酸的在體內的作用。
總歸而言,我們的研究著重探討含有機能性脂質之奈米乳液的免疫調節功效。透過對樹突狀細胞的評估,能更加瞭解當中對免疫功能造成的影響,也能夠幫助探討這些機能性脂質對健康的關聯性。
Many studies described the correlation between functional hydrocarbon and human health. Some of the functional hydrocarbons exert biological effect that is beneficial to the immune system. Eicosapentaenoic acid (EPA) belongs to ω-3 fatty acids and is the component of fish oil; arachidonic acid (AA) belongs to ω-6 fatty acids and is abundant in vegetable oils and meat. Squalene (C30H50), squalane (C30H62) and pristane (C19H40) can be found in the liver oil of shark. Squalene and squalane have the same carbon chain length. Squalane and pristane are completely saturated while squalene is unsaturated. Studies demonstrated the dietary intake of ω-3 and ω-6 fatty acids improves the regulation of immune system. Besides, an overdose of pristane could lead to severe autoimmune response. To clarify the biological effects from the functional hydrocarbons, we investigate the effects of ω-3 and ω-6 fatty acids to immune responses. We also need to understand the influence of carbon chain length and saturation level on the immune responses.
Dendritic cells (DCs) play critical roles in both innate and adaptive immune responses. For this reason, we employed C57BL/6 murine bone marrow-derived dendritic cells (BMDCs) as the in vitro DC model. However, the hydrocarbons mentioned above are poorly soluble in water. We introduced an emulsifying system to formulate these hydrocarbons into emulsions. Thereby, the hydrocarbons could disperse in water so as to facilitate the interactions with DCs. Notably, by sonication and extrusion, we can control the size of the emulsion at about 100 nm, which is consistent with the definition of nanoemulsion. We first treated DCs with these hydrocarbon-based nanoemulsions. However, the DC activation was not significantly altered. We then stimulated DCs with these nanoemulsions plus lipopolysaccharide (LPS), a molecule on the cell membrane of bacteria, to study whether these hydrocarbons inhibit LPS-induced DC activation. The results show EPA inhibited the expression of functional marker and the production of proinflammatory cytokine. However, we found AA exert opposite effects on CD86 expression compared with EPA. The results of squalene and squalane show the saturation level barely alter the influence on DCs. In addition, the results of squalane and pristane also prove the carbon chain length did not alter the influence to DCs. After that, we stimulated DCs with ovalbumin (OVA) to mimic the interaction between DCs and antigen. EPA inhibited the DC number and the expression of functional markers. In contrast, AA increased the number of DCs and the expression of functional markers such as CD86 and MHCII. The results from squalene, squalane and pristane show the saturation level and carbon chain length did not alter the influence to OVA-treated DCs, which are consistent with the LPS-treated DCs.
We further evaluate their effects on DCs in vivo. After intramuscular injection of OVA in C57BL/6 mice, the result shows the DCs recruited to draining lymph nodes (dLNs) within 24 hr postinjection. Remarkably, EPA attenuated the recruitment of DCs to dLNs while AA enhanced the recruitment. This opposite effect of EPA and AA are correlate with the BMDC experiments.
Overall, our study focuses on the immunomodulatory activity of the nanoemulsions based on the functional hydrocarbons. Through the evaluation of DC function, the influence of these functional hydrocarbons to the immune responses could be deeply understood and help us to explore their health benefits.
1. Philbrick D-J, Mahadevappa VG, Ackman RG, Holub BJ. Ingestion of Fish Oil or a Derived N-3 Fatty Acid Concentrate Containing Eicosapentaenoic Acid (EPA) Affects Fatty Acid Compositions of Individual Phospholipids of Rat Brain, Sciatic Nerve and Retina. The Journal of Nutrition. 1987; 117(10): 1663–70.
2. Connor WE. Importance of N-3 Fatty Acids in Health and Disease. The American Journal of Clinical Nutrition. 2000; 71(Suppl. S1): 171S–5S.
3. Yau ACY, Lönnblom E, Zhong J, Holmdahl R. Influence of Hydrocarbon Oil Structure on Adjuvanticity and Autoimmunity. Scientific Reports. 2017; 7(1): 1–13.
4. Mukerjee P. Dimerization of Anions of Long-Chain Fatty Acids in Aqueous Solutions and the Hydrophobic Properties of the Acids. The Journal of Physical Chemistry. 1965; 69(9): 2821–7.
5. Holub BJ. Clinical nutrition: 4. Omega-3 Fatty Acids in Cardiovascular Care. Canadian Medical Association Journal. 2002; 166(5): 608–15.
6. Swanson D, Block R, Mousa SA. Omega-3 Fatty Acids EPA and DHA: Health Benefits Throughout Life. Advances in Nutrition. 2012; 3(1): 1–7.
7. Wyss-Coray T, Rogers J. Inflammation in Alzheimer Disease--A Brief Review of the Basic Science and Clinical Literature. Cold Spring Harbor Perspectives in Medicine. 2011; 2(1): a006346.
8. McGeer PL, Akiyama H, Itagaki S, McGeer EG. Immune System Response in Alzheimer's Disease. The Canadian Journal of Neurological Sciences. 1989; 16(S4): 516–27.
9. Golia E, Limongelli G, Natale F, Fimiani F, Maddaloni V, Pariggiano I, et al. Inflammation and Cardiovascular Disease: From Pathogenesis to Therapeutic Target. Current Atherosclerosis Reports. 2014; 16(9): 435.
10. Peterson LD, Jeffery NM, Thies F, Sanderson P, Newsholme EA, Calder PC. Eicosapentaenoic and Docosahexaenoic Acids Alter Rat Spleen Leukocyte Fatty Acid Composition and Prostaglandin E2 Production but have Different Effects on Lymphocyte Functions and Cell-Mediated Immunity. Lipids. 1998; 33(2): 171–80.
11. Chapkin RS, Kim W, Lupton JR, Mcmurray DN. Dietary Docosahexaenoic and Eicosapentaenoic Acid: Emerging Mediators of Inflammation. Prostaglandins, Leukotrienes and Essential Fatty Acids. 2009; 81(2–3): 187–91.
12. Barber M, Fearon K, Ross J. Eicosapentaenoic Acid Modulates the Immune Response But has no Effect on a Mimic of Antigen-Specific Responses. Nutrition. 2005; 21(5): 588–93.
13. Tutino V, Nunzio VD, Caruso MG, Veronese N, Lorusso D, Masi MD, et al. Elevated AA/EPA Ratio Represents an Inflammatory Biomarker in Tumor Tissue of Metastatic Colorectal Cancer Patients. International Journal of Molecular Sciences. 2019; 20(8): 2050.
14. Watkins BA, Li Y, Allen KGD, Hoffmann WE, Seifert MF. Dietary Ratio of (n-6)/(n-3) Polyunsaturated Fatty Acids Alters the Fatty Acid Composition of Bone Compartments and Biomarkers of Bone Formation in Rats. The Journal of Nutrition. 2000; 130(9): 2274–84.
15. Kearns RJ, Hayek MG, Turek JJ, Meydani M, Burr JR, Greene RJ, et al. Effect of Age, Breed and Dietary Omega-6 (n-6): Omega-3 (n-3) Fatty Acid Ratio on Immune Function, Eicosanoid Production, and Lipid Peroxidation in Young and Aged Dogs. Veterinary Immunology and Immunopathology. 1999; 69(2–4): 165–83.
16. Kim S-K, Karadeniz F. Biological Importance and Applications of Squalene and Squalane. Advances in Food and Nutrition Research. 2012; 65: 223–33.
17. Allison AC. Squalene and Squalane Emulsions as Adjuvants. Methods. 1999; 19(1): 87–93.
18. Shahiwala A, Amiji MM. Enhanced Mucosal and Systemic Immune Response with Squalane Oil-Containing Multiple Emulsions upon Intranasal and Oral Administration in Mice. Journal of Drug Targeting. 2008; 16(4): 302–10.
19. Fox CB, Baldwin SL, Duthie MS, Reed SG, Vedvick TS. Immunomodulatory and Physical Effects of Phospholipid Composition in Vaccine Adjuvant Emulsions. AAPS PharmSciTech. 2012; 13(2): 498–506.
20. McPhee D, Pin A, Kizer L, Perelman L. Squalane from Sugarcane. Cosmetics & Toiletries Magazine. 2014; 129(6): 1–6.
21. Ciriminna R, Pandarus V, Beland F, Pagliaro M. ChemInform Abstract: Catalytic Hydrogenation of Squalene to Squalane. ChemInform. 2014; 45(50).
22. Deprez P, Volkman J, Davenport S. Squalene Content and Neutral Lipid Composition of Livers from Deep-Sea Sharks Caught in Tasmanian Waters. Marine and Freshwater Research. 1990; 41(3): 375.
23. Vingsbo C, Sahlstrand P, Brun JG, Jonsson R, Saxne T, Holmdahl R. Pristane-induced Arthritis in Rats: A New Model for Rheumatoid Arthritis with a Chronic Disease Course Influenced by both Major Histocompatibility Complex and Non-Major Histocompatibility Complex Genes. American Journal of Pathology. 1996; 149(5): 1675–83.
24. Chae BS, Shin TY, Kim DK, Eun JS, Leem JY, Yang JH. Prostaglandin E2-Mediated Dysregulation of Proinflammatory Cytokine Production in Pristane-Induced Lupus mice. Archives of Pharmacal Research. 2008; 31(4): 503–10.
25. Reeves WH, Lee PY, Weinstein JS, Satoh M, Lu L. Induction of Autoimmunity by Pristane and other Naturally Occurring Hydrocarbons. Trends in Immunology. 2009; 30(9): 455–64.
26. Garrett DA, Failla ML, Sarama RJ. Development of an in Vitro Digestion Method to Assess Carotenoid Bioavailability from Meals. Journal of Agricultural and Food Chemistry. 1999; 47(10): 4301–9.
27. Rein MJ, Renouf M, Cruz-Hernandez C, Actis-Goretta L, Thakkar SK, Pinto MDS. Bioavailability of Bioactive Food Compounds: a Challenging Journey to Bioefficacy. British Journal of Clinical Pharmacology. 2013; 75(3): 588–602.
28. Mohanty C, Das M, Sahoo SK. Emerging Role of Nanocarriers to Increase the Solubility and Bioavailability of Curcumin. Expert Opinion on Drug Delivery. 2012; 9(11): 1347–64.
29. Chen H, Khemtong C, Yang X, Chang X, Gao J. Nanonization Strategies for Poorly Water-Soluble Drugs. Drug Discovery Today. 2011; 16(7–8): 354–60.
30. Webster CD, Lim C. Introduction to fish nutrition. Nutrient Requirements and Feeding of Finfish for Aquaculture. CAB International Publishers. 2002; 1–27.
31. Zeyda M, Säemann MD, Stuhlmeier KM, Mascher DG, Nowotny PN, Zlabinger GJ, et al. Polyunsaturated Fatty Acids Block Dendritic Cell Activation and Function Independently of NF-κB Activation. Journal of Biological Chemistry. 2005; 280(14): 14293–301.
32. Gaudin A, Song E, King AR, Saucier-Sawyer JK, Bindra R, Desmaële D, et al. PEGylated Squalenoyl-Gemcitabine Nanoparticles for the Treatment of Glioblastoma. Biomaterials. 2016; 105: 136–44.
33. Veronese FM, Mero A. The Impact of PEGylation on Biological Therapies. BioDrugs. 2008; 22(5): 315–29.
34. Calabro S, Tortoli M, Baudner BC, Pacitto A, Cortese M, O’Hagan DT, et al. Vaccine Adjuvants Alum and MF59 Induce Rapid Recruitment of Neutrophils and Monocytes that Participate in Antigen Transport to Draining Lymph Nodes. Vaccine. 2011; 29(9): 1812–23.
35. Tabatt K, Sameti M, Olbrich C, Müller RH, Lehr C-M. Effect of Cationic Lipid and Matrix Lipid Composition on Solid Lipid Nanoparticle-Mediated Gene Transfer. European Journal of Pharmaceutics and Biopharmaceutics. 2004; 57(2): 155–62.
36. Wang Y, Li X, Zhou Y, Huang P, Xu Y. Preparation of Nanobubbles for Ultrasound Imaging and Intracelluar Drug Delivery. International Journal of Pharmaceutics. 2010; 384(1–2): 148–53.
37. O’Hagan DT. MF59 is a Safe and Potent Vaccine Adjuvant that Enhances Protection against Influenza Virus Infection. Expert Review of Vaccines. 2007; 6(5): 699–710.
38. Banchereau J, Steinman RM. Dendritic Cells and the Control of Immunity. Nature. 1998; 392(6673): 245–52.
39. Wallet MA, Sen P, Tisch R. Immunoregulation of Dendritic Cells. Clinical Medicine & Research. 2005; 3(3): 166–75.
40. Helft J, Böttcher J, Chakravarty P, Zelenay S, Huotari J, Schraml BU, et al. GM-CSF Mouse Bone Marrow Cultures Comprise a Heterogeneous Population of CD11c MHCII Macrophages and Dendritic Cells. Immunity. 2015; 42(6): 1197–211.
41. Théry C, Amigorena S. The Cell Biology of Antigen Presentation in Dendritic Cells. Current Opinion in Immunology. 2001; 13(1): 45–51.
42. Heath WR, Belz GT, Behrens GMN, Smith CM, Forehan SP, Parish IA, et al. Cross-Presentation, Dendritic Cell Subsets, and the Generation of Immunity to Cellular Antigens. Immunological Reviews. 2004; 199(1): 9–26.
43. Langlet C, Tamoutounour S, Henri S, Luche H, Ardouin L, Grégoire C, et al. CD64 Expression Distinguishes Monocyte-Derived and Conventional Dendritic Cells and Reveals Their Distinct Role during Intramuscular Immunization. The Journal of Immunology. 2012; 188(4): 1751–60.
44. Kool M, Soullié Thomas, Nimwegen MV, Willart MA, Muskens F, Jung S, et al. Alum Adjuvant Boosts Adaptive Immunity by Inducing Uric Acid and Activating Inflammatory Dendritic Cells. Journal of Experimental Medicine. 2008; 205(4): 869–82.
45. Allan RS, Waithman J, Bedoui S, Jones CM, Villadangos JA, Zhan Y, et al. Migratory Dendritic Cells Transfer Antigen to a Lymph Node-Resident Dendritic Cell Population for Efficient CTL Priming. Immunity. 2006; 25(1): 153–62.
46. Didierlaurent AM, Collignon C, Bourguignon P, Wouters S, Fierens K, Fochesato M, et al. Enhancement of Adaptive Immunity by the Human Vaccine Adjuvant AS01 Depends on Activated Dendritic Cells. The Journal of Immunology. 2014; 193(4): 1920–30.
47. Miyake K, Shiozawa N, Nagao T, Yoshikawa S, Yamanishi Y, Karasuyama H. Trogocytosis of Peptide–MHC Class II Complexes from Dendritic Cells Confers Antigen-Presenting Ability on Basophils. Proceedings of the National Academy of Sciences. 2017; 114(5): 1111–6.
48. Veldhoen M, Moncrieffe H, Hocking RJ, Atkins CJ, Stockinger B. Modulation of Dendritic Cell Function by Naive and Regulatory CD4 T Cells. The Journal of Immunology. 2006; 176(10): 6202–10.
49. Wu C-C, Liu S-J, Chen H-W, Shen K-Y, Leng C-H. A Toll-like Receptor 2 Agonist-Fused Antigen Enhanced Antitumor Immunity by Increasing Antigen Presentation and the CD8 Memory T Cells Population. Oncotarget. 2016; 7(21): 30804–19.
50. Zhu R, Zhu Y, Zhang M, Xiao Y, Du X, Liu H, et al. The Induction of Maturation on Dendritic Cells by TiO2 and Fe3O4@TiO2 Nanoparticles via NF-κB Signaling Pathway. Materials Science and Engineering: C. 2014; 39: 305–14.
51. Huang R-Y, Yu Y-L, Cheng W-C, Ouyang C-N, Fu E, Chu C-L. Immunosuppressive Effect of Quercetin on Dendritic Cell Activation and Function. The Journal of Immunology. 2010; 184(12): 6815–21.
52. Lenz P, Day PM, Pang Y-YS, Frye SA, Jensen PN, Lowy DR, et al. Papillomavirus-Like Particles Induce Acute Activation of Dendritic Cells. The Journal of Immunology. 2001; 166(9): 5346–55.
53. Ma DY, Clark EA. The Role of CD40 and CD154/CD40L in Dendritic Cells. Seminars in Immunology. 2009; 21(5): 265–72.
54. Caux C, Vanbervliet B, Massacrier C, Azuma M, Okumura K, Lanier LL, et al. B70/B7-2 is Identical to CD86 and is the Major Functional Ligand for CD28 Expressed on Human Dendritic Cells. The Journal of Experimental Medicine. 1994; 180(5): 1841–7.
55. Wu D, Meydani SN. N-3 Polyunsaturated Fatty Acids and Immune Function. Proceedings of the Nutrition Society. 1998; 57(4): 503–9.
56. Calder PC. Immunomodulation by Omega-3 Fatty Acids. Prostaglandins, Leukotrienes and Essential Fatty Acids. 2007; 77(5–6): 327–35.
57. Brok MHD, Raaijmakers TK, Collado-Camps E, Adema GJ. Lipid Droplets as Immune Modulators in Myeloid Cells. Trends in Immunology. 2018; 39(5): 380–92.